php-ml/src/Helper/Optimizer/ConjugateGradient.php

305 lines
8.3 KiB
PHP
Raw Normal View History

<?php
declare(strict_types=1);
namespace Phpml\Helper\Optimizer;
use Closure;
/**
* Conjugate Gradient method to solve a non-linear f(x) with respect to unknown x
* See https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method)
*
* The method applied below is explained in the below document in a practical manner
* - http://web.cs.iastate.edu/~cs577/handouts/conjugate-gradient.pdf
*
* However it is compliant with the general Conjugate Gradient method with
* Fletcher-Reeves update method. Note that, the f(x) is assumed to be one-dimensional
* and one gradient is utilized for all dimensions in the given data.
*/
class ConjugateGradient extends GD
{
public function runOptimization(array $samples, array $targets, Closure $gradientCb): array
{
$this->samples = $samples;
$this->targets = $targets;
$this->gradientCb = $gradientCb;
$this->sampleCount = count($samples);
$this->costValues = [];
$d = MP::muls($this->gradient($this->theta), -1);
for ($i = 0; $i < $this->maxIterations; ++$i) {
// Obtain α that minimizes f(θ + α.d)
$alpha = $this->getAlpha($d);
// θ(k+1) = θ(k) + α.d
$thetaNew = $this->getNewTheta($alpha, $d);
// β = ||∇f(x(k+1))||² ||∇f(x(k))||²
$beta = $this->getBeta($thetaNew);
// d(k+1) =∇f(x(k+1)) + β(k).d(k)
$d = $this->getNewDirection($thetaNew, $beta, $d);
// Save values for the next iteration
$oldTheta = $this->theta;
$this->costValues[] = $this->cost($thetaNew);
$this->theta = $thetaNew;
if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) {
break;
}
}
$this->clear();
return $this->theta;
}
/**
* Executes the callback function for the problem and returns
* sum of the gradient for all samples & targets.
*/
protected function gradient(array $theta): array
{
[, $updates, $penalty] = parent::gradient($theta);
// Calculate gradient for each dimension
$gradient = [];
for ($i = 0; $i <= $this->dimensions; ++$i) {
if ($i === 0) {
$gradient[$i] = array_sum($updates);
} else {
$col = array_column($this->samples, $i - 1);
$error = 0;
foreach ($col as $index => $val) {
$error += $val * $updates[$index];
}
$gradient[$i] = $error + $penalty * $theta[$i];
}
}
return $gradient;
}
/**
* Returns the value of f(x) for given solution
*/
protected function cost(array $theta): float
{
[$cost] = parent::gradient($theta);
2018-10-28 06:44:52 +00:00
return array_sum($cost) / (int) $this->sampleCount;
}
/**
* Calculates alpha that minimizes the function f(θ + α.d)
* by performing a line search that does not rely upon the derivation.
*
* There are several alternatives for this function. For now, we
* prefer a method inspired from the bisection method for its simplicity.
* This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01
*
* Algorithm as follows:
* a) Probe a small alpha (0.0001) and calculate cost function
* b) Probe a larger alpha (0.01) and calculate cost function
* b-1) If cost function decreases, continue enlarging alpha
* b-2) If cost function increases, take the midpoint and try again
*/
protected function getAlpha(array $d): float
{
$small = MP::muls($d, 0.0001);
$large = MP::muls($d, 0.01);
// Obtain θ + α.d for two initial values, x0 and x1
$x0 = MP::add($this->theta, $small);
$x1 = MP::add($this->theta, $large);
$epsilon = 0.0001;
$iteration = 0;
do {
$fx1 = $this->cost($x1);
$fx0 = $this->cost($x0);
// If the difference between two values is small enough
// then break the loop
if (abs($fx1 - $fx0) <= $epsilon) {
break;
}
if ($fx1 < $fx0) {
$x0 = $x1;
$x1 = MP::adds($x1, 0.01); // Enlarge second
} else {
$x1 = MP::divs(MP::add($x1, $x0), 2.0);
} // Get to the midpoint
$error = $fx1 / $this->dimensions;
} while ($error <= $epsilon || $iteration++ < 10);
// Return α = θ / d
// For accuracy, choose a dimension which maximize |d[i]|
$imax = 0;
for ($i = 1; $i <= $this->dimensions; ++$i) {
if (abs($d[$i]) > abs($d[$imax])) {
$imax = $i;
}
}
if ($d[$imax] == 0) {
return $x1[$imax] - $this->theta[$imax];
}
return ($x1[$imax] - $this->theta[$imax]) / $d[$imax];
}
/**
* Calculates new set of solutions with given alpha (for each θ(k)) and
* gradient direction.
*
* θ(k+1) = θ(k) + α.d
*/
protected function getNewTheta(float $alpha, array $d): array
{
return MP::add($this->theta, MP::muls($d, $alpha));
}
/**
* Calculates new beta (β) for given set of solutions by using
* FletcherReeves method.
*
* β = ||f(x(k+1))||² ||f(x(k))||²
*
* See:
* R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149154.
*/
protected function getBeta(array $newTheta): float
{
$gNew = $this->gradient($newTheta);
$gOld = $this->gradient($this->theta);
$dNew = 0;
$dOld = 1e-100;
for ($i = 0; $i <= $this->dimensions; ++$i) {
$dNew += $gNew[$i] ** 2;
$dOld += $gOld[$i] ** 2;
}
return $dNew / $dOld;
}
/**
* Calculates the new conjugate direction
*
* d(k+1) =∇f(x(k+1)) + β(k).d(k)
*/
protected function getNewDirection(array $theta, float $beta, array $d): array
{
$grad = $this->gradient($theta);
return MP::add(MP::muls($grad, -1), MP::muls($d, $beta));
}
}
/**
* Handles element-wise vector operations between vector-vector
* and vector-scalar variables
*/
class MP
{
/**
* Element-wise <b>multiplication</b> of two vectors of the same size
*/
public static function mul(array $m1, array $m2): array
{
$res = [];
foreach ($m1 as $i => $val) {
$res[] = $val * $m2[$i];
}
return $res;
}
/**
* Element-wise <b>division</b> of two vectors of the same size
*/
public static function div(array $m1, array $m2): array
{
$res = [];
foreach ($m1 as $i => $val) {
$res[] = $val / $m2[$i];
}
return $res;
}
/**
* Element-wise <b>addition</b> of two vectors of the same size
*/
public static function add(array $m1, array $m2, int $mag = 1): array
{
$res = [];
foreach ($m1 as $i => $val) {
$res[] = $val + $mag * $m2[$i];
}
return $res;
}
/**
* Element-wise <b>subtraction</b> of two vectors of the same size
*/
public static function sub(array $m1, array $m2): array
{
return self::add($m1, $m2, -1);
}
/**
* Element-wise <b>multiplication</b> of a vector with a scalar
*/
public static function muls(array $m1, float $m2): array
{
$res = [];
foreach ($m1 as $val) {
$res[] = $val * $m2;
}
return $res;
}
/**
* Element-wise <b>division</b> of a vector with a scalar
*/
public static function divs(array $m1, float $m2): array
{
$res = [];
foreach ($m1 as $val) {
$res[] = $val / ($m2 + 1e-32);
}
return $res;
}
/**
* Element-wise <b>addition</b> of a vector with a scalar
*/
public static function adds(array $m1, float $m2, int $mag = 1): array
{
$res = [];
foreach ($m1 as $val) {
$res[] = $val + $mag * $m2;
}
return $res;
}
/**
* Element-wise <b>subtraction</b> of a vector with a scalar
*/
public static function subs(array $m1, float $m2): array
{
return self::adds($m1, $m2, -1);
}
}