Class implementing Epsilon-Support Vector Regression based on libsvm.
### Constructor Parameters
* $kernel (int) - kernel type to be used in the algorithm (default Kernel::LINEAR)
* $degree (int) - degree of the Kernel::POLYNOMIAL function (default 3)
* $epsilon (float) - epsilon in loss function of epsilon-SVR (default 0.1)
* $cost (float) - parameter C of C-SVC (default 1.0)
* $gamma (float) - kernel coefficient for ‘Kernel::RBF’, ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’. If gamma is ‘null’ then 1/features will be used instead.
* $coef0 (float) - independent term in kernel function. It is only significant in ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’ (default 0.0)
* $tolerance (float) - tolerance of termination criterion (default 0.001)