Merge pull request #16 from php-ai/develop

Simple Neural Network with MultilayerPerceptron and Backpropagation
This commit is contained in:
Arkadiusz Kondas 2016-08-14 19:17:12 +02:00 committed by GitHub
commit 41ac2e33ae
44 changed files with 1599 additions and 25 deletions

View File

@ -3,9 +3,11 @@ CHANGELOG
This changelog references the relevant changes done in PHP-ML library. This changelog references the relevant changes done in PHP-ML library.
* 0.1.3 (in plan/progress) * 0.2.1 (in plan/progress)
* SSE, SSTo, SSR [Regression] - sum of the squared * feature [Regression] - SSE, SSTo, SSR - sum of the squared
*
* 0.2.0 (2016-08-14)
* feature [NeuralNetwork] - MultilayerPerceptron and Backpropagation training
* 0.1.2 (2016-07-24) * 0.1.2 (2016-07-24)
* feature [Dataset] - FilesDataset - load dataset from files (folder names as targets) * feature [Dataset] - FilesDataset - load dataset from files (folder names as targets)

43
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,43 @@
# Contributing to PHP-ML
PHP-ML is an open source project. If you'd like to contribute, please read the following text. Before I can merge your
Pull-Request here are some guidelines that you need to follow. These guidelines exist not to annoy you, but to keep the
code base clean, unified and future proof.
## Branch
You should only open pull requests against the develop branch.
## Unit-Tests
Please try to add a test for your pull-request. You can run the unit-tests by calling:
```
bin/phpunit
```
## Travis
GitHub automatically run your pull request through Travis CI against PHP 7.
If you break the tests, I cannot merge your code, so please make sure that your code is working
before opening up a Pull-Request.
## Merge
Please allow me time to review your pull requests. I will give my best to review everything as fast as possible, but cannot always live up to my own expectations.
## Coding Standards
When contributing code to PHP-ML, you must follow its coding standards. To make a long story short, here is the golden tool:
```
tools/php-cs-fixer.sh
```
This script run PHP Coding Standards Fixer with `--level=symfony` param.
More about PHP-CS-Fixer: [http://cs.sensiolabs.org/](http://cs.sensiolabs.org/)
---
Thank you very much again for your contribution!

View File

@ -10,7 +10,7 @@
![PHP-ML - Machine Learning library for PHP](docs/assets/php-ml-logo.png) ![PHP-ML - Machine Learning library for PHP](docs/assets/php-ml-logo.png)
Fresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Preprocessing, Feature Extraction and much more in one library. Fresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library.
PHP-ML requires PHP >= 7.0. PHP-ML requires PHP >= 7.0.
@ -62,6 +62,9 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
* [Classification Report](http://php-ml.readthedocs.io/en/latest/machine-learning/metric/classification-report/) * [Classification Report](http://php-ml.readthedocs.io/en/latest/machine-learning/metric/classification-report/)
* Workflow * Workflow
* [Pipeline](http://php-ml.readthedocs.io/en/latest/machine-learning/workflow/pipeline) * [Pipeline](http://php-ml.readthedocs.io/en/latest/machine-learning/workflow/pipeline)
* Neural Network
* [Multilayer Perceptron](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/multilayer-perceptron/)
* [Backpropagation training](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/backpropagation/)
* Cross Validation * Cross Validation
* [Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/random-split/) * [Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/random-split/)
* [Stratified Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/stratified-random-split/) * [Stratified Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/stratified-random-split/)
@ -84,17 +87,12 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
* [Matrix](http://php-ml.readthedocs.io/en/latest/math/matrix/) * [Matrix](http://php-ml.readthedocs.io/en/latest/math/matrix/)
* [Statistic](http://php-ml.readthedocs.io/en/latest/math/statistic/) * [Statistic](http://php-ml.readthedocs.io/en/latest/math/statistic/)
## Contribute ## Contribute
- Issue Tracker: github.com/php-ai/php-ml/issues - Issue Tracker: github.com/php-ai/php-ml/issues
- Source Code: github.com/php-ai/php-ml - Source Code: github.com/php-ai/php-ml
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with Composer) You can find more about contributing in [CONTRIBUTING.md](CONTRIBUTING.md).
```
bin/phpunit
```
## License ## License

View File

@ -3,7 +3,7 @@
"type": "library", "type": "library",
"description": "PHP-ML - Machine Learning library for PHP", "description": "PHP-ML - Machine Learning library for PHP",
"license": "MIT", "license": "MIT",
"keywords": ["machine learning","pattern recognition","computational learning theory","artificial intelligence"], "keywords": ["machine learning","pattern recognition","neural network","computational learning theory","artificial intelligence"],
"homepage": "https://github.com/php-ai/php-ml", "homepage": "https://github.com/php-ai/php-ml",
"authors": [ "authors": [
{ {

View File

@ -62,6 +62,9 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
* [Classification Report](machine-learning/metric/classification-report/) * [Classification Report](machine-learning/metric/classification-report/)
* Workflow * Workflow
* [Pipeline](machine-learning/workflow/pipeline) * [Pipeline](machine-learning/workflow/pipeline)
* Neural Network
* [Multilayer Perceptron](machine-learning/neural-network/multilayer-perceptron/)
* [Backpropagation training](machine-learning/neural-network/backpropagation/)
* Cross Validation * Cross Validation
* [Random Split](machine-learning/cross-validation/random-split/) * [Random Split](machine-learning/cross-validation/random-split/)
* [Stratified Random Split](machine-learning/cross-validation/stratified-random-split/) * [Stratified Random Split](machine-learning/cross-validation/stratified-random-split/)
@ -90,11 +93,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
- Issue Tracker: github.com/php-ai/php-ml/issues - Issue Tracker: github.com/php-ai/php-ml/issues
- Source Code: github.com/php-ai/php-ml - Source Code: github.com/php-ai/php-ml
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with Composer) You can find more about contributing in [CONTRIBUTING.md](CONTRIBUTING.md).
```
bin/phpunit
```
## License ## License

View File

@ -2,7 +2,7 @@
Classifier implementing the k-nearest neighbors algorithm. Classifier implementing the k-nearest neighbors algorithm.
### Constructor Parameters ## Constructor Parameters
* $k - number of nearest neighbors to scan (default: 3) * $k - number of nearest neighbors to scan (default: 3)
* $distanceMetric - Distance object, default Euclidean (see [distance documentation](math/distance/)) * $distanceMetric - Distance object, default Euclidean (see [distance documentation](math/distance/))
@ -12,7 +12,7 @@ $classifier = new KNearestNeighbors($k=4);
$classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4)); $classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4));
``` ```
### Train ## Train
To train a classifier simply provide train samples and labels (as `array`). Example: To train a classifier simply provide train samples and labels (as `array`). Example:
@ -24,7 +24,7 @@ $classifier = new KNearestNeighbors();
$classifier->train($samples, $labels); $classifier->train($samples, $labels);
``` ```
### Predict ## Predict
To predict sample label use `predict` method. You can provide one sample or array of samples: To predict sample label use `predict` method. You can provide one sample or array of samples:

View File

@ -0,0 +1,29 @@
# Backpropagation
Backpropagation, an abbreviation for "backward propagation of errors", is a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent.
## Constructor Parameters
* $network (Network) - network to train (for example MultilayerPerceptron instance)
* $theta (int) - network theta parameter
```
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Training\Backpropagation;
$network = new MultilayerPerceptron([2, 2, 1]);
$training = new Backpropagation($network);
```
## Training
Example of XOR training:
```
$training->train(
$samples = [[1, 0], [0, 1], [1, 1], [0, 0]],
$targets = [[1], [1], [0], [0]],
$desiredError = 0.2,
$maxIteraions = 30000
);
```

View File

@ -0,0 +1,29 @@
# MultilayerPerceptron
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
## Constructor Parameters
* $layers (array) - array with layers configuration, each value represent number of neurons in each layers
* $activationFunction (ActivationFunction) - neuron activation function
```
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
$mlp = new MultilayerPerceptron([2, 2, 1]);
// 2 nodes in input layer, 2 nodes in first hidden layer and 1 node in output layer
```
## Methods
* setInput(array $input)
* getOutput()
* getLayers()
* addLayer(Layer $layer)
## Activation Functions
* BinaryStep
* Gaussian
* HyperbolicTangent
* Sigmoid (default)

View File

@ -18,6 +18,9 @@ pages:
- Classification Report: machine-learning/metric/classification-report.md - Classification Report: machine-learning/metric/classification-report.md
- Workflow: - Workflow:
- Pipeline: machine-learning/workflow/pipeline.md - Pipeline: machine-learning/workflow/pipeline.md
- Neural Network:
- Multilayer Perceptron: machine-learning/neural-network/multilayer-perceptron.md
- Backpropagation training: machine-learning/neural-network/backpropagation.md
- Cross Validation: - Cross Validation:
- RandomSplit: machine-learning/cross-validation/random-split.md - RandomSplit: machine-learning/cross-validation/random-split.md
- Stratified Random Split: machine-learning/cross-validation/stratified-random-split.md - Stratified Random Split: machine-learning/cross-validation/stratified-random-split.md

View File

@ -61,7 +61,7 @@ class Space extends SplObjectStorage
*/ */
public function addPoint(array $coordinates, $data = null) public function addPoint(array $coordinates, $data = null)
{ {
return $this->attach($this->newPoint($coordinates), $data); $this->attach($this->newPoint($coordinates), $data);
} }
/** /**
@ -74,7 +74,7 @@ class Space extends SplObjectStorage
throw new InvalidArgumentException('can only attach points to spaces'); throw new InvalidArgumentException('can only attach points to spaces');
} }
return parent::attach($point, $data); parent::attach($point, $data);
} }
/** /**
@ -230,8 +230,8 @@ class Space extends SplObjectStorage
protected function initializeKMPPClusters(int $clustersNumber) protected function initializeKMPPClusters(int $clustersNumber)
{ {
$clusters = []; $clusters = [];
$position = rand(1, count($this)); $this->rewind();
for ($i = 1, $this->rewind(); $i < $position && $this->valid(); $i++, $this->next());
$clusters[] = new Cluster($this, $this->current()->getCoordinates()); $clusters[] = new Cluster($this, $this->current()->getCoordinates());
$distances = new SplObjectStorage(); $distances = new SplObjectStorage();

View File

@ -73,4 +73,20 @@ class InvalidArgumentException extends \Exception
{ {
return new self(sprintf('Can\'t find %s language for StopWords', $language)); return new self(sprintf('Can\'t find %s language for StopWords', $language));
} }
/**
* @return InvalidArgumentException
*/
public static function invalidLayerNodeClass()
{
return new self('Layer node class must implement Node interface');
}
/**
* @return InvalidArgumentException
*/
public static function invalidLayersNumber()
{
return new self('Provide at least 2 layers: 1 input and 1 output');
}
} }

View File

@ -193,7 +193,8 @@ class Matrix
$product = []; $product = [];
$multiplier = $matrix->toArray(); $multiplier = $matrix->toArray();
for ($i = 0; $i < $this->rows; ++$i) { for ($i = 0; $i < $this->rows; ++$i) {
for ($j = 0; $j < $matrix->getColumns(); ++$j) { $columns = $matrix->getColumns();
for ($j = 0; $j < $columns; ++$j) {
$product[$i][$j] = 0; $product[$i][$j] = 0;
for ($k = 0; $k < $this->columns; ++$k) { for ($k = 0; $k < $this->columns; ++$k) {
$product[$i][$j] += $this->matrix[$i][$k] * $multiplier[$k][$j]; $product[$i][$j] += $this->matrix[$i][$k] * $multiplier[$k][$j];

View File

@ -16,8 +16,10 @@ class Product
{ {
$product = 0; $product = 0;
foreach ($a as $index => $value) { foreach ($a as $index => $value) {
if (is_numeric($value) && is_numeric($b[$index])) {
$product += $value * $b[$index]; $product += $value * $b[$index];
} }
}
return $product; return $product;
} }

View File

@ -0,0 +1,15 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork;
interface ActivationFunction
{
/**
* @param float|int $value
*
* @return float
*/
public function compute($value): float;
}

View File

@ -0,0 +1,20 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction;
class BinaryStep implements ActivationFunction
{
/**
* @param float|int $value
*
* @return float
*/
public function compute($value): float
{
return $value >= 0 ? 1.0 : 0.0;
}
}

View File

@ -0,0 +1,20 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction;
class Gaussian implements ActivationFunction
{
/**
* @param float|int $value
*
* @return float
*/
public function compute($value): float
{
return exp(-pow($value, 2));
}
}

View File

@ -0,0 +1,33 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction;
class HyperbolicTangent implements ActivationFunction
{
/**
* @var float
*/
private $beta;
/**
* @param float $beta
*/
public function __construct($beta = 1.0)
{
$this->beta = $beta;
}
/**
* @param float|int $value
*
* @return float
*/
public function compute($value): float
{
return tanh($this->beta * $value);
}
}

View File

@ -0,0 +1,33 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction;
class Sigmoid implements ActivationFunction
{
/**
* @var float
*/
private $beta;
/**
* @param float $beta
*/
public function __construct($beta = 1.0)
{
$this->beta = $beta;
}
/**
* @param float|int $value
*
* @return float
*/
public function compute($value): float
{
return 1 / (1 + exp(-$this->beta * $value));
}
}

View File

@ -0,0 +1,65 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork;
use Phpml\Exception\InvalidArgumentException;
use Phpml\NeuralNetwork\Node\Neuron;
class Layer
{
/**
* @var Node[]
*/
private $nodes = [];
/**
* @param int $nodesNumber
* @param string $nodeClass
* @param ActivationFunction|null $activationFunction
*
* @throws InvalidArgumentException
*/
public function __construct(int $nodesNumber = 0, string $nodeClass = Neuron::class, ActivationFunction $activationFunction = null)
{
if (!in_array(Node::class, class_implements($nodeClass))) {
throw InvalidArgumentException::invalidLayerNodeClass();
}
for ($i = 0; $i < $nodesNumber; ++$i) {
$this->nodes[] = $this->createNode($nodeClass, $activationFunction);
}
}
/**
* @param string $nodeClass
* @param ActivationFunction|null $activationFunction
*
* @return Neuron
*/
private function createNode(string $nodeClass, ActivationFunction $activationFunction = null)
{
if (Neuron::class == $nodeClass) {
return new Neuron($activationFunction);
}
return new $nodeClass();
}
/**
* @param Node $node
*/
public function addNode(Node $node)
{
$this->nodes[] = $node;
}
/**
* @return Node[]
*/
public function getNodes()
{
return $this->nodes;
}
}

View File

@ -0,0 +1,30 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork;
interface Network
{
/**
* @param mixed $input
*
* @return self
*/
public function setInput($input);
/**
* @return array
*/
public function getOutput(): array;
/**
* @param Layer $layer
*/
public function addLayer(Layer $layer);
/**
* @return Layer[]
*/
public function getLayers(): array;
}

View File

@ -0,0 +1,81 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Node\Input;
use Phpml\NeuralNetwork\Node\Neuron;
abstract class LayeredNetwork implements Network
{
/**
* @var Layer[]
*/
protected $layers;
/**
* @param Layer $layer
*/
public function addLayer(Layer $layer)
{
$this->layers[] = $layer;
}
/**
* @return Layer[]
*/
public function getLayers(): array
{
return $this->layers;
}
/**
* @return Layer
*/
public function getOutputLayer(): Layer
{
return $this->layers[count($this->layers) - 1];
}
/**
* @return array
*/
public function getOutput(): array
{
$result = [];
foreach ($this->getOutputLayer()->getNodes() as $neuron) {
$result[] = $neuron->getOutput();
}
return $result;
}
/**
* @param mixed $input
*
* @return $this
*/
public function setInput($input)
{
$firstLayer = $this->layers[0];
foreach ($firstLayer->getNodes() as $key => $neuron) {
if ($neuron instanceof Input) {
$neuron->setInput($input[$key]);
}
}
foreach ($this->getLayers() as $layer) {
foreach ($layer->getNodes() as $node) {
if ($node instanceof Neuron) {
$node->refresh();
}
}
}
return $this;
}
}

View File

@ -0,0 +1,95 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Network;
use Phpml\Exception\InvalidArgumentException;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Node\Bias;
use Phpml\NeuralNetwork\Node\Input;
use Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
class MultilayerPerceptron extends LayeredNetwork
{
/**
* @param array $layers
* @param ActivationFunction|null $activationFunction
*
* @throws InvalidArgumentException
*/
public function __construct(array $layers, ActivationFunction $activationFunction = null)
{
if (count($layers) < 2) {
throw InvalidArgumentException::invalidLayersNumber();
}
$this->addInputLayer(array_shift($layers));
$this->addNeuronLayers($layers, $activationFunction);
$this->addBiasNodes();
$this->generateSynapses();
}
/**
* @param int $nodes
*/
private function addInputLayer(int $nodes)
{
$this->addLayer(new Layer($nodes, Input::class));
}
/**
* @param array $layers
* @param ActivationFunction|null $activationFunction
*/
private function addNeuronLayers(array $layers, ActivationFunction $activationFunction = null)
{
foreach ($layers as $neurons) {
$this->addLayer(new Layer($neurons, Neuron::class, $activationFunction));
}
}
private function generateSynapses()
{
$layersNumber = count($this->layers) - 1;
for ($i = 0; $i < $layersNumber; ++$i) {
$currentLayer = $this->layers[$i];
$nextLayer = $this->layers[$i + 1];
$this->generateLayerSynapses($nextLayer, $currentLayer);
}
}
private function addBiasNodes()
{
$biasLayers = count($this->layers) - 1;
for ($i = 0;$i < $biasLayers;++$i) {
$this->layers[$i]->addNode(new Bias());
}
}
/**
* @param Layer $nextLayer
* @param Layer $currentLayer
*/
private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer)
{
foreach ($nextLayer->getNodes() as $nextNeuron) {
if ($nextNeuron instanceof Neuron) {
$this->generateNeuronSynapses($currentLayer, $nextNeuron);
}
}
}
/**
* @param Layer $currentLayer
* @param Neuron $nextNeuron
*/
private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron)
{
foreach ($currentLayer->getNodes() as $currentNeuron) {
$nextNeuron->addSynapse(new Synapse($currentNeuron));
}
}
}

View File

@ -0,0 +1,13 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork;
interface Node
{
/**
* @return float
*/
public function getOutput(): float;
}

View File

@ -0,0 +1,18 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\Node;
class Bias implements Node
{
/**
* @return float
*/
public function getOutput(): float
{
return 1.0;
}
}

View File

@ -0,0 +1,39 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\Node;
class Input implements Node
{
/**
* @var float
*/
private $input;
/**
* @param float $input
*/
public function __construct(float $input = 0.0)
{
$this->input = $input;
}
/**
* @return float
*/
public function getOutput(): float
{
return $this->input;
}
/**
* @param float $input
*/
public function setInput(float $input)
{
$this->input = $input;
}
}

View File

@ -0,0 +1,75 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
use Phpml\NeuralNetwork\Node;
class Neuron implements Node
{
/**
* @var Synapse[]
*/
protected $synapses;
/**
* @var ActivationFunction
*/
protected $activationFunction;
/**
* @var float
*/
protected $output;
/**
* @param ActivationFunction|null $activationFunction
*/
public function __construct(ActivationFunction $activationFunction = null)
{
$this->activationFunction = $activationFunction ?: new ActivationFunction\Sigmoid();
$this->synapses = [];
$this->output = 0;
}
/**
* @param Synapse $synapse
*/
public function addSynapse(Synapse $synapse)
{
$this->synapses[] = $synapse;
}
/**
* @return Synapse[]
*/
public function getSynapses()
{
return $this->synapses;
}
/**
* @return float
*/
public function getOutput(): float
{
if (0 === $this->output) {
$sum = 0;
foreach ($this->synapses as $synapse) {
$sum += $synapse->getOutput();
}
$this->output = $this->activationFunction->compute($sum);
}
return $this->output;
}
public function refresh()
{
$this->output = 0;
}
}

View File

@ -0,0 +1,70 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node;
class Synapse
{
/**
* @var float
*/
protected $weight;
/**
* @var Node
*/
protected $node;
/**
* @param Node $node
* @param float|null $weight
*/
public function __construct(Node $node, float $weight = null)
{
$this->node = $node;
$this->weight = $weight ?: $this->generateRandomWeight();
}
/**
* @return float
*/
protected function generateRandomWeight(): float
{
return 1 / rand(5, 25) * (rand(0, 1) ? -1 : 1);
}
/**
* @return float
*/
public function getOutput(): float
{
return $this->weight * $this->node->getOutput();
}
/**
* @param float $delta
*/
public function changeWeight($delta)
{
$this->weight += $delta;
}
/**
* @return float
*/
public function getWeight()
{
return $this->weight;
}
/**
* @return Node
*/
public function getNode()
{
return $this->node;
}
}

View File

@ -0,0 +1,16 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork;
interface Training
{
/**
* @param array $samples
* @param array $targets
* @param float $desiredError
* @param int $maxIterations
*/
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000);
}

View File

@ -0,0 +1,160 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Training;
use Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Training;
use Phpml\NeuralNetwork\Training\Backpropagation\Sigma;
class Backpropagation implements Training
{
/**
* @var Network
*/
private $network;
/**
* @var int
*/
private $theta;
/**
* @var array
*/
private $sigmas;
/**
* @param Network $network
* @param int $theta
*/
public function __construct(Network $network, int $theta = 1)
{
$this->network = $network;
$this->theta = $theta;
}
/**
* @param array $samples
* @param array $targets
* @param float $desiredError
* @param int $maxIterations
*/
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000)
{
for ($i = 0; $i < $maxIterations; ++$i) {
$resultsWithinError = $this->trainSamples($samples, $targets, $desiredError);
if ($resultsWithinError == count($samples)) {
break;
}
}
}
/**
* @param array $samples
* @param array $targets
* @param float $desiredError
*
* @return int
*/
private function trainSamples(array $samples, array $targets, float $desiredError): int
{
$resultsWithinError = 0;
foreach ($targets as $key => $target) {
$result = $this->network->setInput($samples[$key])->getOutput();
if ($this->isResultWithinError($result, $target, $desiredError)) {
++$resultsWithinError;
} else {
$this->trainSample($samples[$key], $target);
}
}
return $resultsWithinError;
}
/**
* @param array $sample
* @param array $target
*/
private function trainSample(array $sample, array $target)
{
$this->network->setInput($sample)->getOutput();
$this->sigmas = [];
$layers = $this->network->getLayers();
$layersNumber = count($layers);
for ($i = $layersNumber; $i > 1; --$i) {
foreach ($layers[$i - 1]->getNodes() as $key => $neuron) {
if ($neuron instanceof Neuron) {
$sigma = $this->getSigma($neuron, $target, $key, $i == $layersNumber);
foreach ($neuron->getSynapses() as $synapse) {
$synapse->changeWeight($this->theta * $sigma * $synapse->getNode()->getOutput());
}
}
}
}
}
/**
* @param Neuron $neuron
* @param array $target
* @param int $key
* @param bool $lastLayer
*
* @return float
*/
private function getSigma(Neuron $neuron, array $target, int $key, bool $lastLayer): float
{
$neuronOutput = $neuron->getOutput();
$sigma = $neuronOutput * (1 - $neuronOutput);
if ($lastLayer) {
$sigma *= ($target[$key] - $neuronOutput);
} else {
$sigma *= $this->getPrevSigma($neuron);
}
$this->sigmas[] = new Sigma($neuron, $sigma);
return $sigma;
}
/**
* @param Neuron $neuron
*
* @return float
*/
private function getPrevSigma(Neuron $neuron): float
{
$sigma = 0.0;
foreach ($this->sigmas as $neuronSigma) {
$sigma += $neuronSigma->getSigmaForNeuron($neuron);
}
return $sigma;
}
/**
* @param array $result
* @param array $target
* @param float $desiredError
*
* @return bool
*/
private function isResultWithinError(array $result, array $target, float $desiredError)
{
foreach ($target as $key => $value) {
if ($result[$key] > $value + $desiredError || $result[$key] < $value - $desiredError) {
return false;
}
}
return true;
}
}

View File

@ -0,0 +1,64 @@
<?php
declare (strict_types = 1);
namespace Phpml\NeuralNetwork\Training\Backpropagation;
use Phpml\NeuralNetwork\Node\Neuron;
class Sigma
{
/**
* @var Neuron
*/
private $neuron;
/**
* @var float
*/
private $sigma;
/**
* @param Neuron $neuron
* @param float $sigma
*/
public function __construct(Neuron $neuron, $sigma)
{
$this->neuron = $neuron;
$this->sigma = $sigma;
}
/**
* @return Neuron
*/
public function getNeuron()
{
return $this->neuron;
}
/**
* @return float
*/
public function getSigma()
{
return $this->sigma;
}
/**
* @param Neuron $neuron
*
* @return float
*/
public function getSigmaForNeuron(Neuron $neuron): float
{
$sigma = 0.0;
foreach ($this->neuron->getSynapses() as $synapse) {
if ($synapse->getNode() == $neuron) {
$sigma += $synapse->getWeight() * $this->getSigma();
}
}
return $sigma;
}
}

View File

@ -0,0 +1,80 @@
<?php
declare (strict_types = 1);
namespace Phpml\Regression;
use Phpml\Helper\Predictable;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Training\Backpropagation;
class MLPRegressor implements Regression
{
use Predictable;
/**
* @var MultilayerPerceptron
*/
private $perceptron;
/**
* @var array
*/
private $hiddenLayers;
/**
* @var float
*/
private $desiredError;
/**
* @var int
*/
private $maxIterations;
/**
* @var ActivationFunction
*/
private $activationFunction;
/**
* @param array $hiddenLayers
* @param float $desiredError
* @param int $maxIterations
* @param ActivationFunction $activationFunction
*/
public function __construct(array $hiddenLayers = [10], float $desiredError = 0.01, int $maxIterations = 10000, ActivationFunction $activationFunction = null)
{
$this->hiddenLayers = $hiddenLayers;
$this->desiredError = $desiredError;
$this->maxIterations = $maxIterations;
$this->activationFunction = $activationFunction;
}
/**
* @param array $samples
* @param array $targets
*/
public function train(array $samples, array $targets)
{
$layers = $this->hiddenLayers;
array_unshift($layers, count($samples[0]));
$layers[] = count($targets[0]);
$this->perceptron = new MultilayerPerceptron($layers, $this->activationFunction);
$trainer = new Backpropagation($this->perceptron);
$trainer->train($samples, $targets, $this->desiredError, $this->maxIterations);
}
/**
* @param array $sample
*
* @return array
*/
protected function predictSample(array $sample)
{
return $this->perceptron->setInput($sample)->getOutput();
}
}

View File

@ -13,5 +13,8 @@ class ProductTest extends \PHPUnit_Framework_TestCase
$this->assertEquals(10, Product::scalar([2, 3], [-1, 4])); $this->assertEquals(10, Product::scalar([2, 3], [-1, 4]));
$this->assertEquals(-0.1, Product::scalar([1, 4, 1], [-2, 0.5, -0.1])); $this->assertEquals(-0.1, Product::scalar([1, 4, 1], [-2, 0.5, -0.1]));
$this->assertEquals(8, Product::scalar([2], [4])); $this->assertEquals(8, Product::scalar([2], [4]));
//test for non numeric values
$this->assertEquals(0, Product::scalar(['', null, [], new \stdClass()], [null]));
} }
} }

View File

@ -0,0 +1,35 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\BinaryStep;
class BinaryStepTest extends \PHPUnit_Framework_TestCase
{
/**
* @param $expected
* @param $value
*
* @dataProvider binaryStepProvider
*/
public function testBinaryStepActivationFunction($expected, $value)
{
$binaryStep = new BinaryStep();
$this->assertEquals($expected, $binaryStep->compute($value));
}
/**
* @return array
*/
public function binaryStepProvider()
{
return [
[1, 1],
[1, 0],
[0, -0.1],
];
}
}

View File

@ -0,0 +1,37 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Gaussian;
class GaussianTest extends \PHPUnit_Framework_TestCase
{
/**
* @param $expected
* @param $value
*
* @dataProvider gaussianProvider
*/
public function testGaussianActivationFunction($expected, $value)
{
$gaussian = new Gaussian();
$this->assertEquals($expected, $gaussian->compute($value), '', 0.001);
}
/**
* @return array
*/
public function gaussianProvider()
{
return [
[0.367, 1],
[1, 0],
[0.367, -1],
[0, 3],
[0, -3],
];
}
}

View File

@ -0,0 +1,39 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\HyperbolicTangent;
class HyperboliTangentTest extends \PHPUnit_Framework_TestCase
{
/**
* @param $beta
* @param $expected
* @param $value
*
* @dataProvider tanhProvider
*/
public function testHyperbolicTangentActivationFunction($beta, $expected, $value)
{
$tanh = new HyperbolicTangent($beta);
$this->assertEquals($expected, $tanh->compute($value), '', 0.001);
}
/**
* @return array
*/
public function tanhProvider()
{
return [
[1.0, 0.761, 1],
[1.0, 0, 0],
[1.0, 1, 4],
[1.0, -1, -4],
[0.5, 0.462, 1],
[0.3, 0, 0],
];
}
}

View File

@ -0,0 +1,39 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
class SigmoidTest extends \PHPUnit_Framework_TestCase
{
/**
* @param $beta
* @param $expected
* @param $value
*
* @dataProvider sigmoidProvider
*/
public function testSigmoidActivationFunction($beta, $expected, $value)
{
$sigmoid = new Sigmoid($beta);
$this->assertEquals($expected, $sigmoid->compute($value), '', 0.001);
}
/**
* @return array
*/
public function sigmoidProvider()
{
return [
[1.0, 1, 7.25],
[2.0, 1, 3.75],
[1.0, 0.5, 0],
[0.5, 0.5, 0],
[1.0, 0, -7.25],
[2.0, 0, -3.75],
];
}
}

View File

@ -0,0 +1,56 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork;
use Phpml\NeuralNetwork\Node\Bias;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Node\Neuron;
class LayerTest extends \PHPUnit_Framework_TestCase
{
public function testLayerInitialization()
{
$layer = new Layer();
$this->assertEquals([], $layer->getNodes());
}
public function testLayerInitializationWithDefaultNodesType()
{
$layer = new Layer($number = 5);
$this->assertCount($number, $layer->getNodes());
foreach ($layer->getNodes() as $node) {
$this->assertInstanceOf(Neuron::class, $node);
}
}
public function testLayerInitializationWithExplicitNodesType()
{
$layer = new Layer($number = 5, $class = Bias::class);
$this->assertCount($number, $layer->getNodes());
foreach ($layer->getNodes() as $node) {
$this->assertInstanceOf($class, $node);
}
}
/**
* @expectedException \Phpml\Exception\InvalidArgumentException
*/
public function testThrowExceptionOnInvalidNodeClass()
{
new Layer(1, \stdClass::class);
}
public function testAddNodesToLayer()
{
$layer = new Layer();
$layer->addNode($node1 = new Neuron());
$layer->addNode($node2 = new Neuron());
$this->assertEquals([$node1, $node2], $layer->getNodes());
}
}

View File

@ -0,0 +1,53 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Network\LayeredNetwork;
use Phpml\NeuralNetwork\Node\Input;
class LayeredNetworkTest extends \PHPUnit_Framework_TestCase
{
public function testLayersSettersAndGetters()
{
$network = $this->getLayeredNetworkMock();
$network->addLayer($layer1 = new Layer());
$network->addLayer($layer2 = new Layer());
$this->assertEquals([$layer1, $layer2], $network->getLayers());
}
public function testGetLastLayerAsOutputLayer()
{
$network = $this->getLayeredNetworkMock();
$network->addLayer($layer1 = new Layer());
$this->assertEquals($layer1, $network->getOutputLayer());
$network->addLayer($layer2 = new Layer());
$this->assertEquals($layer2, $network->getOutputLayer());
}
public function testSetInputAndGetOutput()
{
$network = $this->getLayeredNetworkMock();
$network->addLayer(new Layer(2, Input::class));
$network->setInput($input = [34, 43]);
$this->assertEquals($input, $network->getOutput());
$network->addLayer(new Layer(1));
$this->assertEquals([0.5], $network->getOutput());
}
/**
* @return LayeredNetwork
*/
private function getLayeredNetworkMock()
{
return $this->getMockForAbstractClass(LayeredNetwork::class);
}
}

View File

@ -0,0 +1,73 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Node\Neuron;
class MultilayerPerceptronTest extends \PHPUnit_Framework_TestCase
{
public function testMultilayerPerceptronLayersInitialization()
{
$mlp = new MultilayerPerceptron([2, 2, 1]);
$this->assertCount(3, $mlp->getLayers());
$layers = $mlp->getLayers();
// input layer
$this->assertCount(3, $layers[0]->getNodes());
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
// hidden layer
$this->assertCount(3, $layers[1]->getNodes());
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
// output layer
$this->assertCount(1, $layers[2]->getNodes());
$this->assertContainsOnly(Neuron::class, $layers[2]->getNodes());
}
public function testSynapsesGeneration()
{
$mlp = new MultilayerPerceptron([2, 2, 1]);
$layers = $mlp->getLayers();
foreach ($layers[1]->getNodes() as $node) {
if ($node instanceof Neuron) {
$synapses = $node->getSynapses();
$this->assertCount(3, $synapses);
$synapsesNodes = $this->getSynapsesNodes($synapses);
foreach ($layers[0]->getNodes() as $prevNode) {
$this->assertContains($prevNode, $synapsesNodes);
}
}
}
}
/**
* @param array $synapses
*
* @return array
*/
private function getSynapsesNodes(array $synapses): array
{
$nodes = [];
foreach ($synapses as $synapse) {
$nodes[] = $synapse->getNode();
}
return $nodes;
}
/**
* @expectedException \Phpml\Exception\InvalidArgumentException
*/
public function testThrowExceptionOnInvalidLayersNumber()
{
new MultilayerPerceptron([2]);
}
}

View File

@ -0,0 +1,17 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\Node\Bias;
class BiasTest extends \PHPUnit_Framework_TestCase
{
public function testBiasOutput()
{
$bias = new Bias();
$this->assertEquals(1.0, $bias->getOutput());
}
}

View File

@ -0,0 +1,27 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\Node\Input;
class InputTest extends \PHPUnit_Framework_TestCase
{
public function testInputInitialization()
{
$input = new Input();
$this->assertEquals(0.0, $input->getOutput());
$input = new Input($value = 9.6);
$this->assertEquals($value, $input->getOutput());
}
public function testSetInput()
{
$input = new Input();
$input->setInput($value = 6.9);
$this->assertEquals($value, $input->getOutput());
}
}

View File

@ -0,0 +1,52 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
use Phpml\NeuralNetwork\Node\Neuron;
class SynapseTest extends \PHPUnit_Framework_TestCase
{
public function testSynapseInitialization()
{
$node = $this->getNodeMock($nodeOutput = 0.5);
$synapse = new Synapse($node, $weight = 0.75);
$this->assertEquals($node, $synapse->getNode());
$this->assertEquals($weight, $synapse->getWeight());
$this->assertEquals($weight * $nodeOutput, $synapse->getOutput());
$synapse = new Synapse($node);
$this->assertInternalType('float', $synapse->getWeight());
}
public function testSynapseWeightChange()
{
$node = $this->getNodeMock();
$synapse = new Synapse($node, $weight = 0.75);
$synapse->changeWeight(1.0);
$this->assertEquals(1.75, $synapse->getWeight());
$synapse->changeWeight(-2.0);
$this->assertEquals(-0.25, $synapse->getWeight());
}
/**
* @param int $output
*
* @return \PHPUnit_Framework_MockObject_MockObject
*/
private function getNodeMock($output = 1)
{
$node = $this->getMock(Neuron::class);
$node->method('getOutput')->willReturn($nodeOutput = 0.5);
return $node;
}
}

View File

@ -0,0 +1,65 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Node;
use Phpml\NeuralNetwork\ActivationFunction\BinaryStep;
use Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
class NeuronTest extends \PHPUnit_Framework_TestCase
{
public function testNeuronInitialization()
{
$neuron = new Neuron();
$this->assertEquals([], $neuron->getSynapses());
$this->assertEquals(0.5, $neuron->getOutput());
}
public function testNeuronActivationFunction()
{
$activationFunction = $this->getMock(BinaryStep::class);
$activationFunction->method('compute')->with(0)->willReturn($output = 0.69);
$neuron = new Neuron($activationFunction);
$this->assertEquals($output, $neuron->getOutput());
}
public function testNeuronWithSynapse()
{
$neuron = new Neuron();
$neuron->addSynapse($synapse = $this->getSynapseMock());
$this->assertEquals([$synapse], $neuron->getSynapses());
$this->assertEquals(0.88, $neuron->getOutput(), '', 0.01);
}
public function testNeuronRefresh()
{
$neuron = new Neuron();
$neuron->getOutput();
$neuron->addSynapse($this->getSynapseMock());
$this->assertEquals(0.5, $neuron->getOutput(), '', 0.01);
$neuron->refresh();
$this->assertEquals(0.88, $neuron->getOutput(), '', 0.01);
}
/**
* @param int $output
*
* @return Synapse|\PHPUnit_Framework_MockObject_MockObject
*/
private function getSynapseMock($output = 2)
{
$synapse = $this->getMock(Synapse::class, [], [], '', false);
$synapse->method('getOutput')->willReturn($output);
return $synapse;
}
}

View File

@ -0,0 +1,29 @@
<?php
declare (strict_types = 1);
namespace tests\Phpml\NeuralNetwork\Training;
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Training\Backpropagation;
class BackpropagationTest extends \PHPUnit_Framework_TestCase
{
public function testBackpropagationForXORLearning()
{
$network = new MultilayerPerceptron([2, 2, 1]);
$training = new Backpropagation($network);
$training->train(
[[1, 0], [0, 1], [1, 1], [0, 0]],
[[1], [1], [0], [0]],
$desiredError = 0.2,
30000
);
$this->assertEquals(0, $network->setInput([1, 1])->getOutput()[0], '', $desiredError);
$this->assertEquals(0, $network->setInput([0, 0])->getOutput()[0], '', $desiredError);
$this->assertEquals(1, $network->setInput([1, 0])->getOutput()[0], '', $desiredError);
$this->assertEquals(1, $network->setInput([0, 1])->getOutput()[0], '', $desiredError);
}
}