mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-10 09:02:15 +00:00
Merge pull request #16 from php-ai/develop
Simple Neural Network with MultilayerPerceptron and Backpropagation
This commit is contained in:
commit
41ac2e33ae
@ -3,9 +3,11 @@ CHANGELOG
|
||||
|
||||
This changelog references the relevant changes done in PHP-ML library.
|
||||
|
||||
* 0.1.3 (in plan/progress)
|
||||
* SSE, SSTo, SSR [Regression] - sum of the squared
|
||||
*
|
||||
* 0.2.1 (in plan/progress)
|
||||
* feature [Regression] - SSE, SSTo, SSR - sum of the squared
|
||||
|
||||
* 0.2.0 (2016-08-14)
|
||||
* feature [NeuralNetwork] - MultilayerPerceptron and Backpropagation training
|
||||
|
||||
* 0.1.2 (2016-07-24)
|
||||
* feature [Dataset] - FilesDataset - load dataset from files (folder names as targets)
|
||||
|
43
CONTRIBUTING.md
Normal file
43
CONTRIBUTING.md
Normal file
@ -0,0 +1,43 @@
|
||||
# Contributing to PHP-ML
|
||||
|
||||
PHP-ML is an open source project. If you'd like to contribute, please read the following text. Before I can merge your
|
||||
Pull-Request here are some guidelines that you need to follow. These guidelines exist not to annoy you, but to keep the
|
||||
code base clean, unified and future proof.
|
||||
|
||||
## Branch
|
||||
|
||||
You should only open pull requests against the develop branch.
|
||||
|
||||
## Unit-Tests
|
||||
|
||||
Please try to add a test for your pull-request. You can run the unit-tests by calling:
|
||||
|
||||
```
|
||||
bin/phpunit
|
||||
```
|
||||
|
||||
## Travis
|
||||
|
||||
GitHub automatically run your pull request through Travis CI against PHP 7.
|
||||
If you break the tests, I cannot merge your code, so please make sure that your code is working
|
||||
before opening up a Pull-Request.
|
||||
|
||||
## Merge
|
||||
|
||||
Please allow me time to review your pull requests. I will give my best to review everything as fast as possible, but cannot always live up to my own expectations.
|
||||
|
||||
## Coding Standards
|
||||
|
||||
When contributing code to PHP-ML, you must follow its coding standards. To make a long story short, here is the golden tool:
|
||||
|
||||
```
|
||||
tools/php-cs-fixer.sh
|
||||
```
|
||||
|
||||
This script run PHP Coding Standards Fixer with `--level=symfony` param.
|
||||
|
||||
More about PHP-CS-Fixer: [http://cs.sensiolabs.org/](http://cs.sensiolabs.org/)
|
||||
|
||||
---
|
||||
|
||||
Thank you very much again for your contribution!
|
12
README.md
12
README.md
@ -10,7 +10,7 @@
|
||||
|
||||
![PHP-ML - Machine Learning library for PHP](docs/assets/php-ml-logo.png)
|
||||
|
||||
Fresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Preprocessing, Feature Extraction and much more in one library.
|
||||
Fresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library.
|
||||
|
||||
PHP-ML requires PHP >= 7.0.
|
||||
|
||||
@ -62,6 +62,9 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
* [Classification Report](http://php-ml.readthedocs.io/en/latest/machine-learning/metric/classification-report/)
|
||||
* Workflow
|
||||
* [Pipeline](http://php-ml.readthedocs.io/en/latest/machine-learning/workflow/pipeline)
|
||||
* Neural Network
|
||||
* [Multilayer Perceptron](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/multilayer-perceptron/)
|
||||
* [Backpropagation training](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/backpropagation/)
|
||||
* Cross Validation
|
||||
* [Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/random-split/)
|
||||
* [Stratified Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/stratified-random-split/)
|
||||
@ -84,17 +87,12 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
* [Matrix](http://php-ml.readthedocs.io/en/latest/math/matrix/)
|
||||
* [Statistic](http://php-ml.readthedocs.io/en/latest/math/statistic/)
|
||||
|
||||
|
||||
## Contribute
|
||||
|
||||
- Issue Tracker: github.com/php-ai/php-ml/issues
|
||||
- Source Code: github.com/php-ai/php-ml
|
||||
|
||||
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with Composer)
|
||||
|
||||
```
|
||||
bin/phpunit
|
||||
```
|
||||
You can find more about contributing in [CONTRIBUTING.md](CONTRIBUTING.md).
|
||||
|
||||
## License
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
"type": "library",
|
||||
"description": "PHP-ML - Machine Learning library for PHP",
|
||||
"license": "MIT",
|
||||
"keywords": ["machine learning","pattern recognition","computational learning theory","artificial intelligence"],
|
||||
"keywords": ["machine learning","pattern recognition","neural network","computational learning theory","artificial intelligence"],
|
||||
"homepage": "https://github.com/php-ai/php-ml",
|
||||
"authors": [
|
||||
{
|
||||
|
@ -62,6 +62,9 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
* [Classification Report](machine-learning/metric/classification-report/)
|
||||
* Workflow
|
||||
* [Pipeline](machine-learning/workflow/pipeline)
|
||||
* Neural Network
|
||||
* [Multilayer Perceptron](machine-learning/neural-network/multilayer-perceptron/)
|
||||
* [Backpropagation training](machine-learning/neural-network/backpropagation/)
|
||||
* Cross Validation
|
||||
* [Random Split](machine-learning/cross-validation/random-split/)
|
||||
* [Stratified Random Split](machine-learning/cross-validation/stratified-random-split/)
|
||||
@ -90,11 +93,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
- Issue Tracker: github.com/php-ai/php-ml/issues
|
||||
- Source Code: github.com/php-ai/php-ml
|
||||
|
||||
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with Composer)
|
||||
|
||||
```
|
||||
bin/phpunit
|
||||
```
|
||||
You can find more about contributing in [CONTRIBUTING.md](CONTRIBUTING.md).
|
||||
|
||||
## License
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
Classifier implementing the k-nearest neighbors algorithm.
|
||||
|
||||
### Constructor Parameters
|
||||
## Constructor Parameters
|
||||
|
||||
* $k - number of nearest neighbors to scan (default: 3)
|
||||
* $distanceMetric - Distance object, default Euclidean (see [distance documentation](math/distance/))
|
||||
@ -12,7 +12,7 @@ $classifier = new KNearestNeighbors($k=4);
|
||||
$classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4));
|
||||
```
|
||||
|
||||
### Train
|
||||
## Train
|
||||
|
||||
To train a classifier simply provide train samples and labels (as `array`). Example:
|
||||
|
||||
@ -24,7 +24,7 @@ $classifier = new KNearestNeighbors();
|
||||
$classifier->train($samples, $labels);
|
||||
```
|
||||
|
||||
### Predict
|
||||
## Predict
|
||||
|
||||
To predict sample label use `predict` method. You can provide one sample or array of samples:
|
||||
|
||||
|
29
docs/machine-learning/neural-network/backpropagation.md
Normal file
29
docs/machine-learning/neural-network/backpropagation.md
Normal file
@ -0,0 +1,29 @@
|
||||
# Backpropagation
|
||||
|
||||
Backpropagation, an abbreviation for "backward propagation of errors", is a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent.
|
||||
|
||||
## Constructor Parameters
|
||||
|
||||
* $network (Network) - network to train (for example MultilayerPerceptron instance)
|
||||
* $theta (int) - network theta parameter
|
||||
|
||||
```
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
$network = new MultilayerPerceptron([2, 2, 1]);
|
||||
$training = new Backpropagation($network);
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Example of XOR training:
|
||||
|
||||
```
|
||||
$training->train(
|
||||
$samples = [[1, 0], [0, 1], [1, 1], [0, 0]],
|
||||
$targets = [[1], [1], [0], [0]],
|
||||
$desiredError = 0.2,
|
||||
$maxIteraions = 30000
|
||||
);
|
||||
```
|
@ -0,0 +1,29 @@
|
||||
# MultilayerPerceptron
|
||||
|
||||
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
|
||||
|
||||
## Constructor Parameters
|
||||
|
||||
* $layers (array) - array with layers configuration, each value represent number of neurons in each layers
|
||||
* $activationFunction (ActivationFunction) - neuron activation function
|
||||
|
||||
```
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
|
||||
// 2 nodes in input layer, 2 nodes in first hidden layer and 1 node in output layer
|
||||
```
|
||||
|
||||
## Methods
|
||||
|
||||
* setInput(array $input)
|
||||
* getOutput()
|
||||
* getLayers()
|
||||
* addLayer(Layer $layer)
|
||||
|
||||
## Activation Functions
|
||||
|
||||
* BinaryStep
|
||||
* Gaussian
|
||||
* HyperbolicTangent
|
||||
* Sigmoid (default)
|
@ -18,6 +18,9 @@ pages:
|
||||
- Classification Report: machine-learning/metric/classification-report.md
|
||||
- Workflow:
|
||||
- Pipeline: machine-learning/workflow/pipeline.md
|
||||
- Neural Network:
|
||||
- Multilayer Perceptron: machine-learning/neural-network/multilayer-perceptron.md
|
||||
- Backpropagation training: machine-learning/neural-network/backpropagation.md
|
||||
- Cross Validation:
|
||||
- RandomSplit: machine-learning/cross-validation/random-split.md
|
||||
- Stratified Random Split: machine-learning/cross-validation/stratified-random-split.md
|
||||
|
@ -61,7 +61,7 @@ class Space extends SplObjectStorage
|
||||
*/
|
||||
public function addPoint(array $coordinates, $data = null)
|
||||
{
|
||||
return $this->attach($this->newPoint($coordinates), $data);
|
||||
$this->attach($this->newPoint($coordinates), $data);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -74,7 +74,7 @@ class Space extends SplObjectStorage
|
||||
throw new InvalidArgumentException('can only attach points to spaces');
|
||||
}
|
||||
|
||||
return parent::attach($point, $data);
|
||||
parent::attach($point, $data);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -230,8 +230,8 @@ class Space extends SplObjectStorage
|
||||
protected function initializeKMPPClusters(int $clustersNumber)
|
||||
{
|
||||
$clusters = [];
|
||||
$position = rand(1, count($this));
|
||||
for ($i = 1, $this->rewind(); $i < $position && $this->valid(); $i++, $this->next());
|
||||
$this->rewind();
|
||||
|
||||
$clusters[] = new Cluster($this, $this->current()->getCoordinates());
|
||||
|
||||
$distances = new SplObjectStorage();
|
||||
|
@ -73,4 +73,20 @@ class InvalidArgumentException extends \Exception
|
||||
{
|
||||
return new self(sprintf('Can\'t find %s language for StopWords', $language));
|
||||
}
|
||||
|
||||
/**
|
||||
* @return InvalidArgumentException
|
||||
*/
|
||||
public static function invalidLayerNodeClass()
|
||||
{
|
||||
return new self('Layer node class must implement Node interface');
|
||||
}
|
||||
|
||||
/**
|
||||
* @return InvalidArgumentException
|
||||
*/
|
||||
public static function invalidLayersNumber()
|
||||
{
|
||||
return new self('Provide at least 2 layers: 1 input and 1 output');
|
||||
}
|
||||
}
|
||||
|
@ -193,7 +193,8 @@ class Matrix
|
||||
$product = [];
|
||||
$multiplier = $matrix->toArray();
|
||||
for ($i = 0; $i < $this->rows; ++$i) {
|
||||
for ($j = 0; $j < $matrix->getColumns(); ++$j) {
|
||||
$columns = $matrix->getColumns();
|
||||
for ($j = 0; $j < $columns; ++$j) {
|
||||
$product[$i][$j] = 0;
|
||||
for ($k = 0; $k < $this->columns; ++$k) {
|
||||
$product[$i][$j] += $this->matrix[$i][$k] * $multiplier[$k][$j];
|
||||
|
@ -16,7 +16,9 @@ class Product
|
||||
{
|
||||
$product = 0;
|
||||
foreach ($a as $index => $value) {
|
||||
$product += $value * $b[$index];
|
||||
if (is_numeric($value) && is_numeric($b[$index])) {
|
||||
$product += $value * $b[$index];
|
||||
}
|
||||
}
|
||||
|
||||
return $product;
|
||||
|
15
src/Phpml/NeuralNetwork/ActivationFunction.php
Normal file
15
src/Phpml/NeuralNetwork/ActivationFunction.php
Normal file
@ -0,0 +1,15 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork;
|
||||
|
||||
interface ActivationFunction
|
||||
{
|
||||
/**
|
||||
* @param float|int $value
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function compute($value): float;
|
||||
}
|
20
src/Phpml/NeuralNetwork/ActivationFunction/BinaryStep.php
Normal file
20
src/Phpml/NeuralNetwork/ActivationFunction/BinaryStep.php
Normal file
@ -0,0 +1,20 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
class BinaryStep implements ActivationFunction
|
||||
{
|
||||
/**
|
||||
* @param float|int $value
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function compute($value): float
|
||||
{
|
||||
return $value >= 0 ? 1.0 : 0.0;
|
||||
}
|
||||
}
|
20
src/Phpml/NeuralNetwork/ActivationFunction/Gaussian.php
Normal file
20
src/Phpml/NeuralNetwork/ActivationFunction/Gaussian.php
Normal file
@ -0,0 +1,20 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
class Gaussian implements ActivationFunction
|
||||
{
|
||||
/**
|
||||
* @param float|int $value
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function compute($value): float
|
||||
{
|
||||
return exp(-pow($value, 2));
|
||||
}
|
||||
}
|
@ -0,0 +1,33 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
class HyperbolicTangent implements ActivationFunction
|
||||
{
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $beta;
|
||||
|
||||
/**
|
||||
* @param float $beta
|
||||
*/
|
||||
public function __construct($beta = 1.0)
|
||||
{
|
||||
$this->beta = $beta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function compute($value): float
|
||||
{
|
||||
return tanh($this->beta * $value);
|
||||
}
|
||||
}
|
33
src/Phpml/NeuralNetwork/ActivationFunction/Sigmoid.php
Normal file
33
src/Phpml/NeuralNetwork/ActivationFunction/Sigmoid.php
Normal file
@ -0,0 +1,33 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
class Sigmoid implements ActivationFunction
|
||||
{
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $beta;
|
||||
|
||||
/**
|
||||
* @param float $beta
|
||||
*/
|
||||
public function __construct($beta = 1.0)
|
||||
{
|
||||
$this->beta = $beta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function compute($value): float
|
||||
{
|
||||
return 1 / (1 + exp(-$this->beta * $value));
|
||||
}
|
||||
}
|
65
src/Phpml/NeuralNetwork/Layer.php
Normal file
65
src/Phpml/NeuralNetwork/Layer.php
Normal file
@ -0,0 +1,65 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork;
|
||||
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
class Layer
|
||||
{
|
||||
/**
|
||||
* @var Node[]
|
||||
*/
|
||||
private $nodes = [];
|
||||
|
||||
/**
|
||||
* @param int $nodesNumber
|
||||
* @param string $nodeClass
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
*
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(int $nodesNumber = 0, string $nodeClass = Neuron::class, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
if (!in_array(Node::class, class_implements($nodeClass))) {
|
||||
throw InvalidArgumentException::invalidLayerNodeClass();
|
||||
}
|
||||
|
||||
for ($i = 0; $i < $nodesNumber; ++$i) {
|
||||
$this->nodes[] = $this->createNode($nodeClass, $activationFunction);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param string $nodeClass
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
*
|
||||
* @return Neuron
|
||||
*/
|
||||
private function createNode(string $nodeClass, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
if (Neuron::class == $nodeClass) {
|
||||
return new Neuron($activationFunction);
|
||||
}
|
||||
|
||||
return new $nodeClass();
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Node $node
|
||||
*/
|
||||
public function addNode(Node $node)
|
||||
{
|
||||
$this->nodes[] = $node;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Node[]
|
||||
*/
|
||||
public function getNodes()
|
||||
{
|
||||
return $this->nodes;
|
||||
}
|
||||
}
|
30
src/Phpml/NeuralNetwork/Network.php
Normal file
30
src/Phpml/NeuralNetwork/Network.php
Normal file
@ -0,0 +1,30 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork;
|
||||
|
||||
interface Network
|
||||
{
|
||||
/**
|
||||
* @param mixed $input
|
||||
*
|
||||
* @return self
|
||||
*/
|
||||
public function setInput($input);
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function getOutput(): array;
|
||||
|
||||
/**
|
||||
* @param Layer $layer
|
||||
*/
|
||||
public function addLayer(Layer $layer);
|
||||
|
||||
/**
|
||||
* @return Layer[]
|
||||
*/
|
||||
public function getLayers(): array;
|
||||
}
|
81
src/Phpml/NeuralNetwork/Network/LayeredNetwork.php
Normal file
81
src/Phpml/NeuralNetwork/Network/LayeredNetwork.php
Normal file
@ -0,0 +1,81 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Network;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
abstract class LayeredNetwork implements Network
|
||||
{
|
||||
/**
|
||||
* @var Layer[]
|
||||
*/
|
||||
protected $layers;
|
||||
|
||||
/**
|
||||
* @param Layer $layer
|
||||
*/
|
||||
public function addLayer(Layer $layer)
|
||||
{
|
||||
$this->layers[] = $layer;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Layer[]
|
||||
*/
|
||||
public function getLayers(): array
|
||||
{
|
||||
return $this->layers;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Layer
|
||||
*/
|
||||
public function getOutputLayer(): Layer
|
||||
{
|
||||
return $this->layers[count($this->layers) - 1];
|
||||
}
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function getOutput(): array
|
||||
{
|
||||
$result = [];
|
||||
foreach ($this->getOutputLayer()->getNodes() as $neuron) {
|
||||
$result[] = $neuron->getOutput();
|
||||
}
|
||||
|
||||
return $result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param mixed $input
|
||||
*
|
||||
* @return $this
|
||||
*/
|
||||
public function setInput($input)
|
||||
{
|
||||
$firstLayer = $this->layers[0];
|
||||
|
||||
foreach ($firstLayer->getNodes() as $key => $neuron) {
|
||||
if ($neuron instanceof Input) {
|
||||
$neuron->setInput($input[$key]);
|
||||
}
|
||||
}
|
||||
|
||||
foreach ($this->getLayers() as $layer) {
|
||||
foreach ($layer->getNodes() as $node) {
|
||||
if ($node instanceof Neuron) {
|
||||
$node->refresh();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return $this;
|
||||
}
|
||||
}
|
95
src/Phpml/NeuralNetwork/Network/MultilayerPerceptron.php
Normal file
95
src/Phpml/NeuralNetwork/Network/MultilayerPerceptron.php
Normal file
@ -0,0 +1,95 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
|
||||
class MultilayerPerceptron extends LayeredNetwork
|
||||
{
|
||||
/**
|
||||
* @param array $layers
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
*
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(array $layers, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
if (count($layers) < 2) {
|
||||
throw InvalidArgumentException::invalidLayersNumber();
|
||||
}
|
||||
|
||||
$this->addInputLayer(array_shift($layers));
|
||||
$this->addNeuronLayers($layers, $activationFunction);
|
||||
$this->addBiasNodes();
|
||||
$this->generateSynapses();
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $nodes
|
||||
*/
|
||||
private function addInputLayer(int $nodes)
|
||||
{
|
||||
$this->addLayer(new Layer($nodes, Input::class));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $layers
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
*/
|
||||
private function addNeuronLayers(array $layers, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
foreach ($layers as $neurons) {
|
||||
$this->addLayer(new Layer($neurons, Neuron::class, $activationFunction));
|
||||
}
|
||||
}
|
||||
|
||||
private function generateSynapses()
|
||||
{
|
||||
$layersNumber = count($this->layers) - 1;
|
||||
for ($i = 0; $i < $layersNumber; ++$i) {
|
||||
$currentLayer = $this->layers[$i];
|
||||
$nextLayer = $this->layers[$i + 1];
|
||||
$this->generateLayerSynapses($nextLayer, $currentLayer);
|
||||
}
|
||||
}
|
||||
|
||||
private function addBiasNodes()
|
||||
{
|
||||
$biasLayers = count($this->layers) - 1;
|
||||
for ($i = 0;$i < $biasLayers;++$i) {
|
||||
$this->layers[$i]->addNode(new Bias());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Layer $nextLayer
|
||||
* @param Layer $currentLayer
|
||||
*/
|
||||
private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer)
|
||||
{
|
||||
foreach ($nextLayer->getNodes() as $nextNeuron) {
|
||||
if ($nextNeuron instanceof Neuron) {
|
||||
$this->generateNeuronSynapses($currentLayer, $nextNeuron);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Layer $currentLayer
|
||||
* @param Neuron $nextNeuron
|
||||
*/
|
||||
private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron)
|
||||
{
|
||||
foreach ($currentLayer->getNodes() as $currentNeuron) {
|
||||
$nextNeuron->addSynapse(new Synapse($currentNeuron));
|
||||
}
|
||||
}
|
||||
}
|
13
src/Phpml/NeuralNetwork/Node.php
Normal file
13
src/Phpml/NeuralNetwork/Node.php
Normal file
@ -0,0 +1,13 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork;
|
||||
|
||||
interface Node
|
||||
{
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getOutput(): float;
|
||||
}
|
18
src/Phpml/NeuralNetwork/Node/Bias.php
Normal file
18
src/Phpml/NeuralNetwork/Node/Bias.php
Normal file
@ -0,0 +1,18 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\Node;
|
||||
|
||||
class Bias implements Node
|
||||
{
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getOutput(): float
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
}
|
39
src/Phpml/NeuralNetwork/Node/Input.php
Normal file
39
src/Phpml/NeuralNetwork/Node/Input.php
Normal file
@ -0,0 +1,39 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\Node;
|
||||
|
||||
class Input implements Node
|
||||
{
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $input;
|
||||
|
||||
/**
|
||||
* @param float $input
|
||||
*/
|
||||
public function __construct(float $input = 0.0)
|
||||
{
|
||||
$this->input = $input;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getOutput(): float
|
||||
{
|
||||
return $this->input;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float $input
|
||||
*/
|
||||
public function setInput(float $input)
|
||||
{
|
||||
$this->input = $input;
|
||||
}
|
||||
}
|
75
src/Phpml/NeuralNetwork/Node/Neuron.php
Normal file
75
src/Phpml/NeuralNetwork/Node/Neuron.php
Normal file
@ -0,0 +1,75 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
use Phpml\NeuralNetwork\Node;
|
||||
|
||||
class Neuron implements Node
|
||||
{
|
||||
/**
|
||||
* @var Synapse[]
|
||||
*/
|
||||
protected $synapses;
|
||||
|
||||
/**
|
||||
* @var ActivationFunction
|
||||
*/
|
||||
protected $activationFunction;
|
||||
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
protected $output;
|
||||
|
||||
/**
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
*/
|
||||
public function __construct(ActivationFunction $activationFunction = null)
|
||||
{
|
||||
$this->activationFunction = $activationFunction ?: new ActivationFunction\Sigmoid();
|
||||
$this->synapses = [];
|
||||
$this->output = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Synapse $synapse
|
||||
*/
|
||||
public function addSynapse(Synapse $synapse)
|
||||
{
|
||||
$this->synapses[] = $synapse;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Synapse[]
|
||||
*/
|
||||
public function getSynapses()
|
||||
{
|
||||
return $this->synapses;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getOutput(): float
|
||||
{
|
||||
if (0 === $this->output) {
|
||||
$sum = 0;
|
||||
foreach ($this->synapses as $synapse) {
|
||||
$sum += $synapse->getOutput();
|
||||
}
|
||||
|
||||
$this->output = $this->activationFunction->compute($sum);
|
||||
}
|
||||
|
||||
return $this->output;
|
||||
}
|
||||
|
||||
public function refresh()
|
||||
{
|
||||
$this->output = 0;
|
||||
}
|
||||
}
|
70
src/Phpml/NeuralNetwork/Node/Neuron/Synapse.php
Normal file
70
src/Phpml/NeuralNetwork/Node/Neuron/Synapse.php
Normal file
@ -0,0 +1,70 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
use Phpml\NeuralNetwork\Node;
|
||||
|
||||
class Synapse
|
||||
{
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
protected $weight;
|
||||
|
||||
/**
|
||||
* @var Node
|
||||
*/
|
||||
protected $node;
|
||||
|
||||
/**
|
||||
* @param Node $node
|
||||
* @param float|null $weight
|
||||
*/
|
||||
public function __construct(Node $node, float $weight = null)
|
||||
{
|
||||
$this->node = $node;
|
||||
$this->weight = $weight ?: $this->generateRandomWeight();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
protected function generateRandomWeight(): float
|
||||
{
|
||||
return 1 / rand(5, 25) * (rand(0, 1) ? -1 : 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getOutput(): float
|
||||
{
|
||||
return $this->weight * $this->node->getOutput();
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float $delta
|
||||
*/
|
||||
public function changeWeight($delta)
|
||||
{
|
||||
$this->weight += $delta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getWeight()
|
||||
{
|
||||
return $this->weight;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Node
|
||||
*/
|
||||
public function getNode()
|
||||
{
|
||||
return $this->node;
|
||||
}
|
||||
}
|
16
src/Phpml/NeuralNetwork/Training.php
Normal file
16
src/Phpml/NeuralNetwork/Training.php
Normal file
@ -0,0 +1,16 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork;
|
||||
|
||||
interface Training
|
||||
{
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
*/
|
||||
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000);
|
||||
}
|
160
src/Phpml/NeuralNetwork/Training/Backpropagation.php
Normal file
160
src/Phpml/NeuralNetwork/Training/Backpropagation.php
Normal file
@ -0,0 +1,160 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Training;
|
||||
|
||||
use Phpml\NeuralNetwork\Network;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Training;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation\Sigma;
|
||||
|
||||
class Backpropagation implements Training
|
||||
{
|
||||
/**
|
||||
* @var Network
|
||||
*/
|
||||
private $network;
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $theta;
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $sigmas;
|
||||
|
||||
/**
|
||||
* @param Network $network
|
||||
* @param int $theta
|
||||
*/
|
||||
public function __construct(Network $network, int $theta = 1)
|
||||
{
|
||||
$this->network = $network;
|
||||
$this->theta = $theta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
*/
|
||||
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000)
|
||||
{
|
||||
for ($i = 0; $i < $maxIterations; ++$i) {
|
||||
$resultsWithinError = $this->trainSamples($samples, $targets, $desiredError);
|
||||
|
||||
if ($resultsWithinError == count($samples)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
private function trainSamples(array $samples, array $targets, float $desiredError): int
|
||||
{
|
||||
$resultsWithinError = 0;
|
||||
foreach ($targets as $key => $target) {
|
||||
$result = $this->network->setInput($samples[$key])->getOutput();
|
||||
|
||||
if ($this->isResultWithinError($result, $target, $desiredError)) {
|
||||
++$resultsWithinError;
|
||||
} else {
|
||||
$this->trainSample($samples[$key], $target);
|
||||
}
|
||||
}
|
||||
|
||||
return $resultsWithinError;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
* @param array $target
|
||||
*/
|
||||
private function trainSample(array $sample, array $target)
|
||||
{
|
||||
$this->network->setInput($sample)->getOutput();
|
||||
$this->sigmas = [];
|
||||
|
||||
$layers = $this->network->getLayers();
|
||||
$layersNumber = count($layers);
|
||||
|
||||
for ($i = $layersNumber; $i > 1; --$i) {
|
||||
foreach ($layers[$i - 1]->getNodes() as $key => $neuron) {
|
||||
if ($neuron instanceof Neuron) {
|
||||
$sigma = $this->getSigma($neuron, $target, $key, $i == $layersNumber);
|
||||
foreach ($neuron->getSynapses() as $synapse) {
|
||||
$synapse->changeWeight($this->theta * $sigma * $synapse->getNode()->getOutput());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Neuron $neuron
|
||||
* @param array $target
|
||||
* @param int $key
|
||||
* @param bool $lastLayer
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
private function getSigma(Neuron $neuron, array $target, int $key, bool $lastLayer): float
|
||||
{
|
||||
$neuronOutput = $neuron->getOutput();
|
||||
$sigma = $neuronOutput * (1 - $neuronOutput);
|
||||
|
||||
if ($lastLayer) {
|
||||
$sigma *= ($target[$key] - $neuronOutput);
|
||||
} else {
|
||||
$sigma *= $this->getPrevSigma($neuron);
|
||||
}
|
||||
|
||||
$this->sigmas[] = new Sigma($neuron, $sigma);
|
||||
|
||||
return $sigma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Neuron $neuron
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
private function getPrevSigma(Neuron $neuron): float
|
||||
{
|
||||
$sigma = 0.0;
|
||||
|
||||
foreach ($this->sigmas as $neuronSigma) {
|
||||
$sigma += $neuronSigma->getSigmaForNeuron($neuron);
|
||||
}
|
||||
|
||||
return $sigma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $result
|
||||
* @param array $target
|
||||
* @param float $desiredError
|
||||
*
|
||||
* @return bool
|
||||
*/
|
||||
private function isResultWithinError(array $result, array $target, float $desiredError)
|
||||
{
|
||||
foreach ($target as $key => $value) {
|
||||
if ($result[$key] > $value + $desiredError || $result[$key] < $value - $desiredError) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
64
src/Phpml/NeuralNetwork/Training/Backpropagation/Sigma.php
Normal file
64
src/Phpml/NeuralNetwork/Training/Backpropagation/Sigma.php
Normal file
@ -0,0 +1,64 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
class Sigma
|
||||
{
|
||||
/**
|
||||
* @var Neuron
|
||||
*/
|
||||
private $neuron;
|
||||
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $sigma;
|
||||
|
||||
/**
|
||||
* @param Neuron $neuron
|
||||
* @param float $sigma
|
||||
*/
|
||||
public function __construct(Neuron $neuron, $sigma)
|
||||
{
|
||||
$this->neuron = $neuron;
|
||||
$this->sigma = $sigma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Neuron
|
||||
*/
|
||||
public function getNeuron()
|
||||
{
|
||||
return $this->neuron;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float
|
||||
*/
|
||||
public function getSigma()
|
||||
{
|
||||
return $this->sigma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Neuron $neuron
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSigmaForNeuron(Neuron $neuron): float
|
||||
{
|
||||
$sigma = 0.0;
|
||||
|
||||
foreach ($this->neuron->getSynapses() as $synapse) {
|
||||
if ($synapse->getNode() == $neuron) {
|
||||
$sigma += $synapse->getWeight() * $this->getSigma();
|
||||
}
|
||||
}
|
||||
|
||||
return $sigma;
|
||||
}
|
||||
}
|
80
src/Phpml/Regression/MLPRegressor.php
Normal file
80
src/Phpml/Regression/MLPRegressor.php
Normal file
@ -0,0 +1,80 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace Phpml\Regression;
|
||||
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
class MLPRegressor implements Regression
|
||||
{
|
||||
use Predictable;
|
||||
|
||||
/**
|
||||
* @var MultilayerPerceptron
|
||||
*/
|
||||
private $perceptron;
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $hiddenLayers;
|
||||
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $desiredError;
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $maxIterations;
|
||||
|
||||
/**
|
||||
* @var ActivationFunction
|
||||
*/
|
||||
private $activationFunction;
|
||||
|
||||
/**
|
||||
* @param array $hiddenLayers
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
* @param ActivationFunction $activationFunction
|
||||
*/
|
||||
public function __construct(array $hiddenLayers = [10], float $desiredError = 0.01, int $maxIterations = 10000, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
$this->hiddenLayers = $hiddenLayers;
|
||||
$this->desiredError = $desiredError;
|
||||
$this->maxIterations = $maxIterations;
|
||||
$this->activationFunction = $activationFunction;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
*/
|
||||
public function train(array $samples, array $targets)
|
||||
{
|
||||
$layers = $this->hiddenLayers;
|
||||
array_unshift($layers, count($samples[0]));
|
||||
$layers[] = count($targets[0]);
|
||||
|
||||
$this->perceptron = new MultilayerPerceptron($layers, $this->activationFunction);
|
||||
|
||||
$trainer = new Backpropagation($this->perceptron);
|
||||
$trainer->train($samples, $targets, $this->desiredError, $this->maxIterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
*
|
||||
* @return array
|
||||
*/
|
||||
protected function predictSample(array $sample)
|
||||
{
|
||||
return $this->perceptron->setInput($sample)->getOutput();
|
||||
}
|
||||
}
|
@ -13,5 +13,8 @@ class ProductTest extends \PHPUnit_Framework_TestCase
|
||||
$this->assertEquals(10, Product::scalar([2, 3], [-1, 4]));
|
||||
$this->assertEquals(-0.1, Product::scalar([1, 4, 1], [-2, 0.5, -0.1]));
|
||||
$this->assertEquals(8, Product::scalar([2], [4]));
|
||||
|
||||
//test for non numeric values
|
||||
$this->assertEquals(0, Product::scalar(['', null, [], new \stdClass()], [null]));
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,35 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction\BinaryStep;
|
||||
|
||||
class BinaryStepTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
/**
|
||||
* @param $expected
|
||||
* @param $value
|
||||
*
|
||||
* @dataProvider binaryStepProvider
|
||||
*/
|
||||
public function testBinaryStepActivationFunction($expected, $value)
|
||||
{
|
||||
$binaryStep = new BinaryStep();
|
||||
|
||||
$this->assertEquals($expected, $binaryStep->compute($value));
|
||||
}
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function binaryStepProvider()
|
||||
{
|
||||
return [
|
||||
[1, 1],
|
||||
[1, 0],
|
||||
[0, -0.1],
|
||||
];
|
||||
}
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction\Gaussian;
|
||||
|
||||
class GaussianTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
/**
|
||||
* @param $expected
|
||||
* @param $value
|
||||
*
|
||||
* @dataProvider gaussianProvider
|
||||
*/
|
||||
public function testGaussianActivationFunction($expected, $value)
|
||||
{
|
||||
$gaussian = new Gaussian();
|
||||
|
||||
$this->assertEquals($expected, $gaussian->compute($value), '', 0.001);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function gaussianProvider()
|
||||
{
|
||||
return [
|
||||
[0.367, 1],
|
||||
[1, 0],
|
||||
[0.367, -1],
|
||||
[0, 3],
|
||||
[0, -3],
|
||||
];
|
||||
}
|
||||
}
|
@ -0,0 +1,39 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction\HyperbolicTangent;
|
||||
|
||||
class HyperboliTangentTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
/**
|
||||
* @param $beta
|
||||
* @param $expected
|
||||
* @param $value
|
||||
*
|
||||
* @dataProvider tanhProvider
|
||||
*/
|
||||
public function testHyperbolicTangentActivationFunction($beta, $expected, $value)
|
||||
{
|
||||
$tanh = new HyperbolicTangent($beta);
|
||||
|
||||
$this->assertEquals($expected, $tanh->compute($value), '', 0.001);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function tanhProvider()
|
||||
{
|
||||
return [
|
||||
[1.0, 0.761, 1],
|
||||
[1.0, 0, 0],
|
||||
[1.0, 1, 4],
|
||||
[1.0, -1, -4],
|
||||
[0.5, 0.462, 1],
|
||||
[0.3, 0, 0],
|
||||
];
|
||||
}
|
||||
}
|
39
tests/Phpml/NeuralNetwork/ActivationFunction/SigmoidTest.php
Normal file
39
tests/Phpml/NeuralNetwork/ActivationFunction/SigmoidTest.php
Normal file
@ -0,0 +1,39 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\ActivationFunction;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
|
||||
|
||||
class SigmoidTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
/**
|
||||
* @param $beta
|
||||
* @param $expected
|
||||
* @param $value
|
||||
*
|
||||
* @dataProvider sigmoidProvider
|
||||
*/
|
||||
public function testSigmoidActivationFunction($beta, $expected, $value)
|
||||
{
|
||||
$sigmoid = new Sigmoid($beta);
|
||||
|
||||
$this->assertEquals($expected, $sigmoid->compute($value), '', 0.001);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return array
|
||||
*/
|
||||
public function sigmoidProvider()
|
||||
{
|
||||
return [
|
||||
[1.0, 1, 7.25],
|
||||
[2.0, 1, 3.75],
|
||||
[1.0, 0.5, 0],
|
||||
[0.5, 0.5, 0],
|
||||
[1.0, 0, -7.25],
|
||||
[2.0, 0, -3.75],
|
||||
];
|
||||
}
|
||||
}
|
56
tests/Phpml/NeuralNetwork/LayerTest.php
Normal file
56
tests/Phpml/NeuralNetwork/LayerTest.php
Normal file
@ -0,0 +1,56 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork;
|
||||
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
class LayerTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testLayerInitialization()
|
||||
{
|
||||
$layer = new Layer();
|
||||
|
||||
$this->assertEquals([], $layer->getNodes());
|
||||
}
|
||||
|
||||
public function testLayerInitializationWithDefaultNodesType()
|
||||
{
|
||||
$layer = new Layer($number = 5);
|
||||
|
||||
$this->assertCount($number, $layer->getNodes());
|
||||
foreach ($layer->getNodes() as $node) {
|
||||
$this->assertInstanceOf(Neuron::class, $node);
|
||||
}
|
||||
}
|
||||
|
||||
public function testLayerInitializationWithExplicitNodesType()
|
||||
{
|
||||
$layer = new Layer($number = 5, $class = Bias::class);
|
||||
|
||||
$this->assertCount($number, $layer->getNodes());
|
||||
foreach ($layer->getNodes() as $node) {
|
||||
$this->assertInstanceOf($class, $node);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @expectedException \Phpml\Exception\InvalidArgumentException
|
||||
*/
|
||||
public function testThrowExceptionOnInvalidNodeClass()
|
||||
{
|
||||
new Layer(1, \stdClass::class);
|
||||
}
|
||||
|
||||
public function testAddNodesToLayer()
|
||||
{
|
||||
$layer = new Layer();
|
||||
$layer->addNode($node1 = new Neuron());
|
||||
$layer->addNode($node2 = new Neuron());
|
||||
|
||||
$this->assertEquals([$node1, $node2], $layer->getNodes());
|
||||
}
|
||||
}
|
53
tests/Phpml/NeuralNetwork/Network/LayeredNetworkTest.php
Normal file
53
tests/Phpml/NeuralNetwork/Network/LayeredNetworkTest.php
Normal file
@ -0,0 +1,53 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Network\LayeredNetwork;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
|
||||
class LayeredNetworkTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testLayersSettersAndGetters()
|
||||
{
|
||||
$network = $this->getLayeredNetworkMock();
|
||||
|
||||
$network->addLayer($layer1 = new Layer());
|
||||
$network->addLayer($layer2 = new Layer());
|
||||
|
||||
$this->assertEquals([$layer1, $layer2], $network->getLayers());
|
||||
}
|
||||
|
||||
public function testGetLastLayerAsOutputLayer()
|
||||
{
|
||||
$network = $this->getLayeredNetworkMock();
|
||||
$network->addLayer($layer1 = new Layer());
|
||||
|
||||
$this->assertEquals($layer1, $network->getOutputLayer());
|
||||
|
||||
$network->addLayer($layer2 = new Layer());
|
||||
$this->assertEquals($layer2, $network->getOutputLayer());
|
||||
}
|
||||
|
||||
public function testSetInputAndGetOutput()
|
||||
{
|
||||
$network = $this->getLayeredNetworkMock();
|
||||
$network->addLayer(new Layer(2, Input::class));
|
||||
|
||||
$network->setInput($input = [34, 43]);
|
||||
$this->assertEquals($input, $network->getOutput());
|
||||
|
||||
$network->addLayer(new Layer(1));
|
||||
$this->assertEquals([0.5], $network->getOutput());
|
||||
}
|
||||
|
||||
/**
|
||||
* @return LayeredNetwork
|
||||
*/
|
||||
private function getLayeredNetworkMock()
|
||||
{
|
||||
return $this->getMockForAbstractClass(LayeredNetwork::class);
|
||||
}
|
||||
}
|
@ -0,0 +1,73 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
class MultilayerPerceptronTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testMultilayerPerceptronLayersInitialization()
|
||||
{
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
|
||||
$this->assertCount(3, $mlp->getLayers());
|
||||
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
// input layer
|
||||
$this->assertCount(3, $layers[0]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
|
||||
|
||||
// hidden layer
|
||||
$this->assertCount(3, $layers[1]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
|
||||
|
||||
// output layer
|
||||
$this->assertCount(1, $layers[2]->getNodes());
|
||||
$this->assertContainsOnly(Neuron::class, $layers[2]->getNodes());
|
||||
}
|
||||
|
||||
public function testSynapsesGeneration()
|
||||
{
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
foreach ($layers[1]->getNodes() as $node) {
|
||||
if ($node instanceof Neuron) {
|
||||
$synapses = $node->getSynapses();
|
||||
$this->assertCount(3, $synapses);
|
||||
|
||||
$synapsesNodes = $this->getSynapsesNodes($synapses);
|
||||
foreach ($layers[0]->getNodes() as $prevNode) {
|
||||
$this->assertContains($prevNode, $synapsesNodes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $synapses
|
||||
*
|
||||
* @return array
|
||||
*/
|
||||
private function getSynapsesNodes(array $synapses): array
|
||||
{
|
||||
$nodes = [];
|
||||
foreach ($synapses as $synapse) {
|
||||
$nodes[] = $synapse->getNode();
|
||||
}
|
||||
|
||||
return $nodes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @expectedException \Phpml\Exception\InvalidArgumentException
|
||||
*/
|
||||
public function testThrowExceptionOnInvalidLayersNumber()
|
||||
{
|
||||
new MultilayerPerceptron([2]);
|
||||
}
|
||||
}
|
17
tests/Phpml/NeuralNetwork/Node/BiasTest.php
Normal file
17
tests/Phpml/NeuralNetwork/Node/BiasTest.php
Normal file
@ -0,0 +1,17 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
|
||||
class BiasTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testBiasOutput()
|
||||
{
|
||||
$bias = new Bias();
|
||||
|
||||
$this->assertEquals(1.0, $bias->getOutput());
|
||||
}
|
||||
}
|
27
tests/Phpml/NeuralNetwork/Node/InputTest.php
Normal file
27
tests/Phpml/NeuralNetwork/Node/InputTest.php
Normal file
@ -0,0 +1,27 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
|
||||
class InputTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testInputInitialization()
|
||||
{
|
||||
$input = new Input();
|
||||
$this->assertEquals(0.0, $input->getOutput());
|
||||
|
||||
$input = new Input($value = 9.6);
|
||||
$this->assertEquals($value, $input->getOutput());
|
||||
}
|
||||
|
||||
public function testSetInput()
|
||||
{
|
||||
$input = new Input();
|
||||
$input->setInput($value = 6.9);
|
||||
|
||||
$this->assertEquals($value, $input->getOutput());
|
||||
}
|
||||
}
|
52
tests/Phpml/NeuralNetwork/Node/Neuron/SynapseTest.php
Normal file
52
tests/Phpml/NeuralNetwork/Node/Neuron/SynapseTest.php
Normal file
@ -0,0 +1,52 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
|
||||
class SynapseTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testSynapseInitialization()
|
||||
{
|
||||
$node = $this->getNodeMock($nodeOutput = 0.5);
|
||||
|
||||
$synapse = new Synapse($node, $weight = 0.75);
|
||||
|
||||
$this->assertEquals($node, $synapse->getNode());
|
||||
$this->assertEquals($weight, $synapse->getWeight());
|
||||
$this->assertEquals($weight * $nodeOutput, $synapse->getOutput());
|
||||
|
||||
$synapse = new Synapse($node);
|
||||
|
||||
$this->assertInternalType('float', $synapse->getWeight());
|
||||
}
|
||||
|
||||
public function testSynapseWeightChange()
|
||||
{
|
||||
$node = $this->getNodeMock();
|
||||
$synapse = new Synapse($node, $weight = 0.75);
|
||||
$synapse->changeWeight(1.0);
|
||||
|
||||
$this->assertEquals(1.75, $synapse->getWeight());
|
||||
|
||||
$synapse->changeWeight(-2.0);
|
||||
|
||||
$this->assertEquals(-0.25, $synapse->getWeight());
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $output
|
||||
*
|
||||
* @return \PHPUnit_Framework_MockObject_MockObject
|
||||
*/
|
||||
private function getNodeMock($output = 1)
|
||||
{
|
||||
$node = $this->getMock(Neuron::class);
|
||||
$node->method('getOutput')->willReturn($nodeOutput = 0.5);
|
||||
|
||||
return $node;
|
||||
}
|
||||
}
|
65
tests/Phpml/NeuralNetwork/Node/NeuronTest.php
Normal file
65
tests/Phpml/NeuralNetwork/Node/NeuronTest.php
Normal file
@ -0,0 +1,65 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Node;
|
||||
|
||||
use Phpml\NeuralNetwork\ActivationFunction\BinaryStep;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
|
||||
class NeuronTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testNeuronInitialization()
|
||||
{
|
||||
$neuron = new Neuron();
|
||||
|
||||
$this->assertEquals([], $neuron->getSynapses());
|
||||
$this->assertEquals(0.5, $neuron->getOutput());
|
||||
}
|
||||
|
||||
public function testNeuronActivationFunction()
|
||||
{
|
||||
$activationFunction = $this->getMock(BinaryStep::class);
|
||||
$activationFunction->method('compute')->with(0)->willReturn($output = 0.69);
|
||||
|
||||
$neuron = new Neuron($activationFunction);
|
||||
|
||||
$this->assertEquals($output, $neuron->getOutput());
|
||||
}
|
||||
|
||||
public function testNeuronWithSynapse()
|
||||
{
|
||||
$neuron = new Neuron();
|
||||
$neuron->addSynapse($synapse = $this->getSynapseMock());
|
||||
|
||||
$this->assertEquals([$synapse], $neuron->getSynapses());
|
||||
$this->assertEquals(0.88, $neuron->getOutput(), '', 0.01);
|
||||
}
|
||||
|
||||
public function testNeuronRefresh()
|
||||
{
|
||||
$neuron = new Neuron();
|
||||
$neuron->getOutput();
|
||||
$neuron->addSynapse($this->getSynapseMock());
|
||||
|
||||
$this->assertEquals(0.5, $neuron->getOutput(), '', 0.01);
|
||||
|
||||
$neuron->refresh();
|
||||
|
||||
$this->assertEquals(0.88, $neuron->getOutput(), '', 0.01);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $output
|
||||
*
|
||||
* @return Synapse|\PHPUnit_Framework_MockObject_MockObject
|
||||
*/
|
||||
private function getSynapseMock($output = 2)
|
||||
{
|
||||
$synapse = $this->getMock(Synapse::class, [], [], '', false);
|
||||
$synapse->method('getOutput')->willReturn($output);
|
||||
|
||||
return $synapse;
|
||||
}
|
||||
}
|
29
tests/Phpml/NeuralNetwork/Training/BackpropagationTest.php
Normal file
29
tests/Phpml/NeuralNetwork/Training/BackpropagationTest.php
Normal file
@ -0,0 +1,29 @@
|
||||
<?php
|
||||
|
||||
declare (strict_types = 1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Training;
|
||||
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
class BackpropagationTest extends \PHPUnit_Framework_TestCase
|
||||
{
|
||||
public function testBackpropagationForXORLearning()
|
||||
{
|
||||
$network = new MultilayerPerceptron([2, 2, 1]);
|
||||
$training = new Backpropagation($network);
|
||||
|
||||
$training->train(
|
||||
[[1, 0], [0, 1], [1, 1], [0, 0]],
|
||||
[[1], [1], [0], [0]],
|
||||
$desiredError = 0.2,
|
||||
30000
|
||||
);
|
||||
|
||||
$this->assertEquals(0, $network->setInput([1, 1])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(0, $network->setInput([0, 0])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(1, $network->setInput([1, 0])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(1, $network->setInput([0, 1])->getOutput()[0], '', $desiredError);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user