Add SelectKBest docs

This commit is contained in:
Arkadiusz Kondas 2018-02-14 19:51:07 +01:00
parent 83b1d7c9ac
commit 451f84c2e6
6 changed files with 103 additions and 5 deletions

View File

@ -6,7 +6,7 @@
[![Documentation Status](https://readthedocs.org/projects/php-ml/badge/?version=master)](http://php-ml.readthedocs.org/)
[![Total Downloads](https://poser.pugx.org/php-ai/php-ml/downloads.svg)](https://packagist.org/packages/php-ai/php-ml)
[![License](https://poser.pugx.org/php-ai/php-ml/license.svg)](https://packagist.org/packages/php-ai/php-ml)
[![Coverage Status](https://coveralls.io/repos/github/php-ai/php-ml/badge.svg?branch=coveralls)](https://coveralls.io/github/php-ai/php-ml?branch=coveralls)
[![Coverage Status](https://coveralls.io/repos/github/php-ai/php-ml/badge.svg?branch=master)](https://coveralls.io/github/php-ai/php-ml?branch=master)
[![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/php-ai/php-ml/?branch=master)
<a href="http://www.yegor256.com/2016/10/23/award-2017.html">
@ -89,6 +89,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
* [Stratified Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/stratified-random-split/)
* Feature Selection
* [Variance Threshold](http://php-ml.readthedocs.io/en/latest/machine-learning/feature-selection/variance-threshold/)
* [SelectKBest](http://php-ml.readthedocs.io/en/latest/machine-learning/feature-selection/selectkbest/)
* Preprocessing
* [Normalization](http://php-ml.readthedocs.io/en/latest/machine-learning/preprocessing/normalization/)
* [Imputation missing values](http://php-ml.readthedocs.io/en/latest/machine-learning/preprocessing/imputation-missing-values/)

View File

@ -6,7 +6,7 @@
[![Documentation Status](https://readthedocs.org/projects/php-ml/badge/?version=master)](http://php-ml.readthedocs.org/)
[![Total Downloads](https://poser.pugx.org/php-ai/php-ml/downloads.svg)](https://packagist.org/packages/php-ai/php-ml)
[![License](https://poser.pugx.org/php-ai/php-ml/license.svg)](https://packagist.org/packages/php-ai/php-ml)
[![Coverage Status](https://coveralls.io/repos/github/php-ai/php-ml/badge.svg?branch=coveralls)](https://coveralls.io/github/php-ai/php-ml?branch=coveralls)
[![Coverage Status](https://coveralls.io/repos/github/php-ai/php-ml/badge.svg?branch=master)](https://coveralls.io/github/php-ai/php-ml?branch=master)
[![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/php-ai/php-ml/?branch=master)
<a href="http://www.yegor256.com/2016/10/23/award-2017.html">
@ -78,6 +78,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
* [Stratified Random Split](machine-learning/cross-validation/stratified-random-split.md)
* Feature Selection
* [Variance Threshold](machine-learning/feature-selection/variance-threshold.md)
* [SelectKBest](machine-learning/feature-selection/selectkbest.md)
* Preprocessing
* [Normalization](machine-learning/preprocessing/normalization.md)
* [Imputation missing values](machine-learning/preprocessing/imputation-missing-values.md)

View File

@ -0,0 +1,96 @@
# SelectKBest
`SelectKBest` - select features according to the k highest scores.
## Constructor Parameters
* $k (int) - number of top features to select, rest will be removed (default: 10)
* $scoringFunction (ScoringFunction) - function that take samples and targets and return array with scores (default: ANOVAFValue)
```php
use Phpml\FeatureSelection\SelectKBest;
$transformer = new SelectKBest(2);
```
## Example of use
As an example we can perform feature selection on Iris dataset to retrieve only the two best features as follows:
```php
use Phpml\FeatureSelection\SelectKBest;
use Phpml\Dataset\Demo\IrisDataset;
$dataset = new IrisDataset();
$selector = new SelectKBest(2);
$selector->fit($samples = $dataset->getSamples(), $dataset->getTargets());
$selector->transform($samples);
/*
$samples[0] = [1.4, 0.2];
*/
```
## Scores
You can get a array with the calculated score for each feature.
A higher value means that a given feature is better suited for learning.
Of course, the rating depends on the scoring function used.
```
use Phpml\FeatureSelection\SelectKBest;
use Phpml\Dataset\Demo\IrisDataset;
$dataset = new IrisDataset();
$selector = new SelectKBest(2);
$selector->fit($samples = $dataset->getSamples(), $dataset->getTargets());
$selector->scores();
/*
..array(4) {
[0]=>
float(119.26450218451)
[1]=>
float(47.364461402997)
[2]=>
float(1179.0343277002)
[3]=>
float(959.32440572573)
}
*/
```
## Scoring function
Available scoring functions:
For classification:
- **ANOVAFValue**
The one-way ANOVA tests the null hypothesis that 2 or more groups have the same population mean.
The test is applied to samples from two or more groups, possibly with differing sizes.
For regression:
- **UnivariateLinearRegression**
Quick linear model for testing the effect of a single regressor, sequentially for many regressors.
This is done in 2 steps:
- 1. The cross correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *std(y)).
- 2. It is converted to an F score
## Pipeline
`SelectKBest` implements `Transformer` interface so it can be used as part of pipeline:
```php
use Phpml\FeatureSelection\SelectKBest;
use Phpml\Classification\SVC;
use Phpml\FeatureExtraction\TfIdfTransformer;
use Phpml\Pipeline;
$transformers = [
new TfIdfTransformer(),
new SelectKBest(3)
];
$estimator = new SVC();
$pipeline = new Pipeline($transformers, $estimator);
```

View File

@ -27,6 +27,7 @@ pages:
- Stratified Random Split: machine-learning/cross-validation/stratified-random-split.md
- Feature Selection:
- VarianceThreshold: machine-learning/feature-selection/variance-threshold.md
- SelectKBest: machine-learning/feature-selection/selectkbest.md
- Preprocessing:
- Normalization: machine-learning/preprocessing/normalization.md
- Imputation missing values: machine-learning/preprocessing/imputation-missing-values.md

View File

@ -16,7 +16,7 @@ use Phpml\Math\Statistic\Mean;
*
* 1. The cross correlation between each regressor and the target is computed,
* that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *std(y)).
* 2. It is converted to an F score then to a p-value.
* 2. It is converted to an F score.
*
* Ported from scikit-learn f_regression function (http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression)
*/

View File

@ -7,7 +7,6 @@ namespace Phpml\Tests;
use Phpml\Classification\SVC;
use Phpml\FeatureExtraction\TfIdfTransformer;
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\FeatureSelection\ScoringFunction\ANOVAFValue;
use Phpml\FeatureSelection\SelectKBest;
use Phpml\ModelManager;
use Phpml\Pipeline;