mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-25 06:17:34 +00:00
Neural networks improvements (#89)
* MultilayerPerceptron interface changes - Signature closer to other algorithms - New predict method - Remove desired error - Move maxIterations to constructor * MLP tests for multiple hidden layers and multi-class * Update all MLP-related tests * coding style fixes * Backpropagation included in multilayer-perceptron
This commit is contained in:
parent
7ab80b6e56
commit
4af8449b1c
@ -76,8 +76,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
* Workflow
|
||||
* [Pipeline](http://php-ml.readthedocs.io/en/latest/machine-learning/workflow/pipeline)
|
||||
* Neural Network
|
||||
* [Multilayer Perceptron](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/multilayer-perceptron/)
|
||||
* [Backpropagation training](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/backpropagation/)
|
||||
* [Multilayer Perceptron Classifier](http://php-ml.readthedocs.io/en/latest/machine-learning/neural-network/multilayer-perceptron-classifier/)
|
||||
* Cross Validation
|
||||
* [Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/random-split/)
|
||||
* [Stratified Random Split](http://php-ml.readthedocs.io/en/latest/machine-learning/cross-validation/stratified-random-split/)
|
||||
|
@ -65,8 +65,7 @@ Example scripts are available in a separate repository [php-ai/php-ml-examples](
|
||||
* Workflow
|
||||
* [Pipeline](machine-learning/workflow/pipeline)
|
||||
* Neural Network
|
||||
* [Multilayer Perceptron](machine-learning/neural-network/multilayer-perceptron/)
|
||||
* [Backpropagation training](machine-learning/neural-network/backpropagation/)
|
||||
* [Multilayer Perceptron Classifier](machine-learning/neural-network/multilayer-perceptron-classifier/)
|
||||
* Cross Validation
|
||||
* [Random Split](machine-learning/cross-validation/random-split/)
|
||||
* [Stratified Random Split](machine-learning/cross-validation/stratified-random-split/)
|
||||
|
@ -1,30 +0,0 @@
|
||||
# Backpropagation
|
||||
|
||||
Backpropagation, an abbreviation for "backward propagation of errors", is a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent.
|
||||
|
||||
## Constructor Parameters
|
||||
|
||||
* $network (Network) - network to train (for example MultilayerPerceptron instance)
|
||||
* $theta (int) - network theta parameter
|
||||
|
||||
```
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
$network = new MultilayerPerceptron([2, 2, 1]);
|
||||
$training = new Backpropagation($network);
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Example of XOR training:
|
||||
|
||||
```
|
||||
$training->train(
|
||||
$samples = [[1, 0], [0, 1], [1, 1], [0, 0]],
|
||||
$targets = [[1], [1], [0], [0]],
|
||||
$desiredError = 0.2,
|
||||
$maxIteraions = 30000
|
||||
);
|
||||
```
|
||||
You can train the neural network using multiple data sets, predictions will be based on all the training data.
|
@ -0,0 +1,50 @@
|
||||
# MLPClassifier
|
||||
|
||||
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
|
||||
|
||||
## Constructor Parameters
|
||||
|
||||
* $inputLayerFeatures (int) - the number of input layer features
|
||||
* $hiddenLayers (array) - array with the hidden layers configuration, each value represent number of neurons in each layers
|
||||
* $classes (array) - array with the different training set classes (array keys are ignored)
|
||||
* $iterations (int) - number of training iterations
|
||||
* $theta (int) - network theta parameter
|
||||
* $activationFunction (ActivationFunction) - neuron activation function
|
||||
|
||||
```
|
||||
use Phpml\Classification\MLPClassifier;
|
||||
$mlp = new MLPClassifier(4, [2], ['a', 'b', 'c']);
|
||||
|
||||
// 4 nodes in input layer, 2 nodes in first hidden layer and 3 possible labels.
|
||||
|
||||
```
|
||||
|
||||
## Train
|
||||
|
||||
To train a MLP simply provide train samples and labels (as array). Example:
|
||||
|
||||
|
||||
```
|
||||
$mlp->train(
|
||||
$samples = [[1, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [0, 0, 0, 0]],
|
||||
$targets = ['a', 'a', 'b', 'c']
|
||||
);
|
||||
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
To predict sample label use predict method. You can provide one sample or array of samples:
|
||||
|
||||
```
|
||||
$mlp->predict([[1, 1, 1, 1], [0, 0, 0, 0]]);
|
||||
// return ['b', 'c'];
|
||||
|
||||
```
|
||||
|
||||
## Activation Functions
|
||||
|
||||
* BinaryStep
|
||||
* Gaussian
|
||||
* HyperbolicTangent
|
||||
* Sigmoid (default)
|
@ -1,29 +0,0 @@
|
||||
# MultilayerPerceptron
|
||||
|
||||
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
|
||||
|
||||
## Constructor Parameters
|
||||
|
||||
* $layers (array) - array with layers configuration, each value represent number of neurons in each layers
|
||||
* $activationFunction (ActivationFunction) - neuron activation function
|
||||
|
||||
```
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
|
||||
// 2 nodes in input layer, 2 nodes in first hidden layer and 1 node in output layer
|
||||
```
|
||||
|
||||
## Methods
|
||||
|
||||
* setInput(array $input)
|
||||
* getOutput()
|
||||
* getLayers()
|
||||
* addLayer(Layer $layer)
|
||||
|
||||
## Activation Functions
|
||||
|
||||
* BinaryStep
|
||||
* Gaussian
|
||||
* HyperbolicTangent
|
||||
* Sigmoid (default)
|
@ -21,8 +21,7 @@ pages:
|
||||
- Workflow:
|
||||
- Pipeline: machine-learning/workflow/pipeline.md
|
||||
- Neural Network:
|
||||
- Multilayer Perceptron: machine-learning/neural-network/multilayer-perceptron.md
|
||||
- Backpropagation training: machine-learning/neural-network/backpropagation.md
|
||||
- Multilayer Perceptron Classifier: machine-learning/neural-network/multilayer-perceptron-classifier.md
|
||||
- Cross Validation:
|
||||
- RandomSplit: machine-learning/cross-validation/random-split.md
|
||||
- Stratified Random Split: machine-learning/cross-validation/stratified-random-split.md
|
||||
|
67
src/Phpml/Classification/MLPClassifier.php
Normal file
67
src/Phpml/Classification/MLPClassifier.php
Normal file
@ -0,0 +1,67 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification;
|
||||
|
||||
use Phpml\Classification\Classifier;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
use Phpml\Helper\Predictable;
|
||||
|
||||
class MLPClassifier extends MultilayerPerceptron implements Classifier
|
||||
{
|
||||
|
||||
/**
|
||||
* @param mixed $target
|
||||
* @return int
|
||||
*/
|
||||
public function getTargetClass($target): int
|
||||
{
|
||||
if (!in_array($target, $this->classes)) {
|
||||
throw InvalidArgumentException::invalidTarget($target);
|
||||
}
|
||||
return array_search($target, $this->classes);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
*
|
||||
* @return mixed
|
||||
*/
|
||||
protected function predictSample(array $sample)
|
||||
{
|
||||
$output = $this->setInput($sample)->getOutput();
|
||||
|
||||
$predictedClass = null;
|
||||
$max = 0;
|
||||
foreach ($output as $class => $value) {
|
||||
if ($value > $max) {
|
||||
$predictedClass = $class;
|
||||
$max = $value;
|
||||
}
|
||||
}
|
||||
return $this->classes[$predictedClass];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
* @param mixed $target
|
||||
*/
|
||||
protected function trainSample(array $sample, $target)
|
||||
{
|
||||
|
||||
// Feed-forward.
|
||||
$this->setInput($sample)->getOutput();
|
||||
|
||||
// Back-propagate.
|
||||
$this->backpropagation->backpropagate($this->getLayers(), $this->getTargetClass($target));
|
||||
}
|
||||
}
|
@ -66,6 +66,14 @@ class InvalidArgumentException extends \Exception
|
||||
return new self('Invalid clusters number');
|
||||
}
|
||||
|
||||
/**
|
||||
* @return InvalidArgumentException
|
||||
*/
|
||||
public static function invalidTarget($target)
|
||||
{
|
||||
return new self('Target with value ' . $target . ' is not part of the accepted classes');
|
||||
}
|
||||
|
||||
/**
|
||||
* @param string $language
|
||||
*
|
||||
@ -89,6 +97,15 @@ class InvalidArgumentException extends \Exception
|
||||
*/
|
||||
public static function invalidLayersNumber()
|
||||
{
|
||||
return new self('Provide at least 2 layers: 1 input and 1 output');
|
||||
return new self('Provide at least 1 hidden layer');
|
||||
}
|
||||
|
||||
/**
|
||||
* @return InvalidArgumentException
|
||||
*/
|
||||
public static function invalidClassesNumber()
|
||||
{
|
||||
return new self('Provide at least 2 different classes');
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -71,7 +71,7 @@ abstract class LayeredNetwork implements Network
|
||||
foreach ($this->getLayers() as $layer) {
|
||||
foreach ($layer->getNodes() as $node) {
|
||||
if ($node instanceof Neuron) {
|
||||
$node->refresh();
|
||||
$node->reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4,34 +4,93 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\Estimator;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
||||
use Phpml\Helper\Predictable;
|
||||
|
||||
class MultilayerPerceptron extends LayeredNetwork
|
||||
abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator
|
||||
{
|
||||
use Predictable;
|
||||
|
||||
/**
|
||||
* @param array $layers
|
||||
* @var array
|
||||
*/
|
||||
protected $classes = [];
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $iterations;
|
||||
|
||||
/**
|
||||
* @var Backpropagation
|
||||
*/
|
||||
protected $backpropagation = null;
|
||||
|
||||
/**
|
||||
* @param int $inputLayerFeatures
|
||||
* @param array $hiddenLayers
|
||||
* @param array $classes
|
||||
* @param int $iterations
|
||||
* @param ActivationFunction|null $activationFunction
|
||||
* @param int $theta
|
||||
*
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(array $layers, ActivationFunction $activationFunction = null)
|
||||
public function __construct(int $inputLayerFeatures, array $hiddenLayers, array $classes, int $iterations = 10000, ActivationFunction $activationFunction = null, int $theta = 1)
|
||||
{
|
||||
if (count($layers) < 2) {
|
||||
if (empty($hiddenLayers)) {
|
||||
throw InvalidArgumentException::invalidLayersNumber();
|
||||
}
|
||||
|
||||
$this->addInputLayer(array_shift($layers));
|
||||
$this->addNeuronLayers($layers, $activationFunction);
|
||||
$nClasses = count($classes);
|
||||
if ($nClasses < 2) {
|
||||
throw InvalidArgumentException::invalidClassesNumber();
|
||||
}
|
||||
$this->classes = array_values($classes);
|
||||
|
||||
$this->iterations = $iterations;
|
||||
|
||||
$this->addInputLayer($inputLayerFeatures);
|
||||
$this->addNeuronLayers($hiddenLayers, $activationFunction);
|
||||
$this->addNeuronLayers([$nClasses], $activationFunction);
|
||||
|
||||
$this->addBiasNodes();
|
||||
$this->generateSynapses();
|
||||
|
||||
$this->backpropagation = new Backpropagation($theta);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
*/
|
||||
public function train(array $samples, array $targets)
|
||||
{
|
||||
for ($i = 0; $i < $this->iterations; ++$i) {
|
||||
$this->trainSamples($samples, $targets);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
* @param mixed $target
|
||||
*/
|
||||
protected abstract function trainSample(array $sample, $target);
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
* @return mixed
|
||||
*/
|
||||
protected abstract function predictSample(array $sample);
|
||||
|
||||
/**
|
||||
* @param int $nodes
|
||||
*/
|
||||
@ -92,4 +151,15 @@ class MultilayerPerceptron extends LayeredNetwork
|
||||
$nextNeuron->addSynapse(new Synapse($currentNeuron));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
*/
|
||||
private function trainSamples(array $samples, array $targets)
|
||||
{
|
||||
foreach ($targets as $key => $target) {
|
||||
$this->trainSample($samples[$key], $target);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -68,7 +68,7 @@ class Neuron implements Node
|
||||
return $this->output;
|
||||
}
|
||||
|
||||
public function refresh()
|
||||
public function reset()
|
||||
{
|
||||
$this->output = 0;
|
||||
}
|
||||
|
@ -9,8 +9,6 @@ interface Training
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
*/
|
||||
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000);
|
||||
public function train(array $samples, array $targets);
|
||||
}
|
||||
|
@ -4,18 +4,11 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\NeuralNetwork\Training;
|
||||
|
||||
use Phpml\NeuralNetwork\Network;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use Phpml\NeuralNetwork\Training;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation\Sigma;
|
||||
|
||||
class Backpropagation implements Training
|
||||
class Backpropagation
|
||||
{
|
||||
/**
|
||||
* @var Network
|
||||
*/
|
||||
private $network;
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
@ -27,96 +20,62 @@ class Backpropagation implements Training
|
||||
private $sigmas;
|
||||
|
||||
/**
|
||||
* @param Network $network
|
||||
* @param int $theta
|
||||
* @var array
|
||||
*/
|
||||
public function __construct(Network $network, int $theta = 1)
|
||||
private $prevSigmas;
|
||||
|
||||
/**
|
||||
* @param int $theta
|
||||
*/
|
||||
public function __construct(int $theta)
|
||||
{
|
||||
$this->network = $network;
|
||||
$this->theta = $theta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
* @param array $layers
|
||||
* @param mixed $targetClass
|
||||
*/
|
||||
public function train(array $samples, array $targets, float $desiredError = 0.001, int $maxIterations = 10000)
|
||||
public function backpropagate(array $layers, $targetClass)
|
||||
{
|
||||
$samplesCount = count($samples);
|
||||
|
||||
for ($i = 0; $i < $maxIterations; ++$i) {
|
||||
$resultsWithinError = $this->trainSamples($samples, $targets, $desiredError);
|
||||
|
||||
if ($resultsWithinError === $samplesCount) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
* @param float $desiredError
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
private function trainSamples(array $samples, array $targets, float $desiredError): int
|
||||
{
|
||||
$resultsWithinError = 0;
|
||||
foreach ($targets as $key => $target) {
|
||||
$result = $this->network->setInput($samples[$key])->getOutput();
|
||||
|
||||
if ($this->isResultWithinError($result, $target, $desiredError)) {
|
||||
++$resultsWithinError;
|
||||
} else {
|
||||
$this->trainSample($samples[$key], $target);
|
||||
}
|
||||
}
|
||||
|
||||
return $resultsWithinError;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
* @param array $target
|
||||
*/
|
||||
private function trainSample(array $sample, array $target)
|
||||
{
|
||||
$this->network->setInput($sample)->getOutput();
|
||||
$this->sigmas = [];
|
||||
|
||||
$layers = $this->network->getLayers();
|
||||
$layersNumber = count($layers);
|
||||
|
||||
// Backpropagation.
|
||||
for ($i = $layersNumber; $i > 1; --$i) {
|
||||
$this->sigmas = [];
|
||||
foreach ($layers[$i - 1]->getNodes() as $key => $neuron) {
|
||||
|
||||
if ($neuron instanceof Neuron) {
|
||||
$sigma = $this->getSigma($neuron, $target, $key, $i == $layersNumber);
|
||||
$sigma = $this->getSigma($neuron, $targetClass, $key, $i == $layersNumber);
|
||||
foreach ($neuron->getSynapses() as $synapse) {
|
||||
$synapse->changeWeight($this->theta * $sigma * $synapse->getNode()->getOutput());
|
||||
}
|
||||
}
|
||||
}
|
||||
$this->prevSigmas = $this->sigmas;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param Neuron $neuron
|
||||
* @param array $target
|
||||
* @param int $targetClass
|
||||
* @param int $key
|
||||
* @param bool $lastLayer
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
private function getSigma(Neuron $neuron, array $target, int $key, bool $lastLayer): float
|
||||
private function getSigma(Neuron $neuron, int $targetClass, int $key, bool $lastLayer): float
|
||||
{
|
||||
$neuronOutput = $neuron->getOutput();
|
||||
$sigma = $neuronOutput * (1 - $neuronOutput);
|
||||
|
||||
if ($lastLayer) {
|
||||
$sigma *= ($target[$key] - $neuronOutput);
|
||||
$value = 0;
|
||||
if ($targetClass === $key) {
|
||||
$value = 1;
|
||||
}
|
||||
$sigma *= ($value - $neuronOutput);
|
||||
} else {
|
||||
$sigma *= $this->getPrevSigma($neuron);
|
||||
}
|
||||
@ -135,28 +94,10 @@ class Backpropagation implements Training
|
||||
{
|
||||
$sigma = 0.0;
|
||||
|
||||
foreach ($this->sigmas as $neuronSigma) {
|
||||
foreach ($this->prevSigmas as $neuronSigma) {
|
||||
$sigma += $neuronSigma->getSigmaForNeuron($neuron);
|
||||
}
|
||||
|
||||
return $sigma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $result
|
||||
* @param array $target
|
||||
* @param float $desiredError
|
||||
*
|
||||
* @return bool
|
||||
*/
|
||||
private function isResultWithinError(array $result, array $target, float $desiredError)
|
||||
{
|
||||
foreach ($target as $key => $value) {
|
||||
if ($result[$key] > $value + $desiredError || $result[$key] < $value - $desiredError) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -1,80 +0,0 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Regression;
|
||||
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
|
||||
class MLPRegressor implements Regression
|
||||
{
|
||||
use Predictable;
|
||||
|
||||
/**
|
||||
* @var MultilayerPerceptron
|
||||
*/
|
||||
private $perceptron;
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $hiddenLayers;
|
||||
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
private $desiredError;
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $maxIterations;
|
||||
|
||||
/**
|
||||
* @var ActivationFunction
|
||||
*/
|
||||
private $activationFunction;
|
||||
|
||||
/**
|
||||
* @param array $hiddenLayers
|
||||
* @param float $desiredError
|
||||
* @param int $maxIterations
|
||||
* @param ActivationFunction $activationFunction
|
||||
*/
|
||||
public function __construct(array $hiddenLayers = [10], float $desiredError = 0.01, int $maxIterations = 10000, ActivationFunction $activationFunction = null)
|
||||
{
|
||||
$this->hiddenLayers = $hiddenLayers;
|
||||
$this->desiredError = $desiredError;
|
||||
$this->maxIterations = $maxIterations;
|
||||
$this->activationFunction = $activationFunction;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
*/
|
||||
public function train(array $samples, array $targets)
|
||||
{
|
||||
$layers = $this->hiddenLayers;
|
||||
array_unshift($layers, count($samples[0]));
|
||||
$layers[] = count($targets[0]);
|
||||
|
||||
$this->perceptron = new MultilayerPerceptron($layers, $this->activationFunction);
|
||||
|
||||
$trainer = new Backpropagation($this->perceptron);
|
||||
$trainer->train($samples, $targets, $this->desiredError, $this->maxIterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
*
|
||||
* @return array
|
||||
*/
|
||||
protected function predictSample(array $sample)
|
||||
{
|
||||
return $this->perceptron->setInput($sample)->getOutput();
|
||||
}
|
||||
}
|
129
tests/Phpml/Classification/MLPClassifierTest.php
Normal file
129
tests/Phpml/Classification/MLPClassifierTest.php
Normal file
@ -0,0 +1,129 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace tests\Phpml\Classification;
|
||||
|
||||
use Phpml\Classification\MLPClassifier;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class MLPClassifierTest extends TestCase
|
||||
{
|
||||
public function testMLPClassifierLayersInitialization()
|
||||
{
|
||||
$mlp = new MLPClassifier(2, [2], [0, 1]);
|
||||
|
||||
$this->assertCount(3, $mlp->getLayers());
|
||||
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
// input layer
|
||||
$this->assertCount(3, $layers[0]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
|
||||
|
||||
// hidden layer
|
||||
$this->assertCount(3, $layers[1]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[1]->getNodes());
|
||||
|
||||
// output layer
|
||||
$this->assertCount(2, $layers[2]->getNodes());
|
||||
$this->assertContainsOnly(Neuron::class, $layers[2]->getNodes());
|
||||
}
|
||||
|
||||
public function testSynapsesGeneration()
|
||||
{
|
||||
$mlp = new MLPClassifier(2, [2], [0, 1]);
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
foreach ($layers[1]->getNodes() as $node) {
|
||||
if ($node instanceof Neuron) {
|
||||
$synapses = $node->getSynapses();
|
||||
$this->assertCount(3, $synapses);
|
||||
|
||||
$synapsesNodes = $this->getSynapsesNodes($synapses);
|
||||
foreach ($layers[0]->getNodes() as $prevNode) {
|
||||
$this->assertContains($prevNode, $synapsesNodes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public function testBackpropagationLearning()
|
||||
{
|
||||
// Single layer 2 classes.
|
||||
$network = new MLPClassifier(2, [2], ['a', 'b'], 1000);
|
||||
$network->train(
|
||||
[[1, 0], [0, 1], [1, 1], [0, 0]],
|
||||
['a', 'b', 'a', 'b']
|
||||
);
|
||||
|
||||
$this->assertEquals('a', $network->predict([1, 0]));
|
||||
$this->assertEquals('b', $network->predict([0, 1]));
|
||||
$this->assertEquals('a', $network->predict([1, 1]));
|
||||
$this->assertEquals('b', $network->predict([0, 0]));
|
||||
}
|
||||
|
||||
public function testBackpropagationLearningMultilayer()
|
||||
{
|
||||
// Multi-layer 2 classes.
|
||||
$network = new MLPClassifier(5, [3, 2], ['a', 'b']);
|
||||
$network->train(
|
||||
[[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0]],
|
||||
['a', 'b', 'a', 'b']
|
||||
);
|
||||
|
||||
$this->assertEquals('a', $network->predict([1, 0, 0, 0, 0]));
|
||||
$this->assertEquals('b', $network->predict([0, 1, 1, 0, 0]));
|
||||
$this->assertEquals('a', $network->predict([1, 1, 1, 1, 1]));
|
||||
$this->assertEquals('b', $network->predict([0, 0, 0, 0, 0]));
|
||||
}
|
||||
|
||||
public function testBackpropagationLearningMulticlass()
|
||||
{
|
||||
// Multi-layer more than 2 classes.
|
||||
$network = new MLPClassifier(5, [3, 2], ['a', 'b', 4]);
|
||||
$network->train(
|
||||
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0]],
|
||||
['a', 'b', 'a', 'a', 4]
|
||||
);
|
||||
|
||||
$this->assertEquals('a', $network->predict([1, 0, 0, 0, 0]));
|
||||
$this->assertEquals('b', $network->predict([0, 1, 0, 0, 0]));
|
||||
$this->assertEquals('a', $network->predict([0, 0, 1, 1, 0]));
|
||||
$this->assertEquals('a', $network->predict([1, 1, 1, 1, 1]));
|
||||
$this->assertEquals(4, $network->predict([0, 0, 0, 0, 0]));
|
||||
}
|
||||
|
||||
/**
|
||||
* @expectedException \Phpml\Exception\InvalidArgumentException
|
||||
*/
|
||||
public function testThrowExceptionOnInvalidLayersNumber()
|
||||
{
|
||||
new MLPClassifier(2, [], [0, 1]);
|
||||
}
|
||||
|
||||
/**
|
||||
* @expectedException \Phpml\Exception\InvalidArgumentException
|
||||
*/
|
||||
public function testThrowExceptionOnInvalidClassesNumber()
|
||||
{
|
||||
new MLPClassifier(2, [2], [0]);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $synapses
|
||||
*
|
||||
* @return array
|
||||
*/
|
||||
private function getSynapsesNodes(array $synapses): array
|
||||
{
|
||||
$nodes = [];
|
||||
foreach ($synapses as $synapse) {
|
||||
$nodes[] = $synapse->getNode();
|
||||
}
|
||||
|
||||
return $nodes;
|
||||
}
|
||||
}
|
@ -1,74 +0,0 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class MultilayerPerceptronTest extends TestCase
|
||||
{
|
||||
public function testMultilayerPerceptronLayersInitialization()
|
||||
{
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
|
||||
$this->assertCount(3, $mlp->getLayers());
|
||||
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
// input layer
|
||||
$this->assertCount(3, $layers[0]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
|
||||
|
||||
// hidden layer
|
||||
$this->assertCount(3, $layers[1]->getNodes());
|
||||
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
|
||||
|
||||
// output layer
|
||||
$this->assertCount(1, $layers[2]->getNodes());
|
||||
$this->assertContainsOnly(Neuron::class, $layers[2]->getNodes());
|
||||
}
|
||||
|
||||
public function testSynapsesGeneration()
|
||||
{
|
||||
$mlp = new MultilayerPerceptron([2, 2, 1]);
|
||||
$layers = $mlp->getLayers();
|
||||
|
||||
foreach ($layers[1]->getNodes() as $node) {
|
||||
if ($node instanceof Neuron) {
|
||||
$synapses = $node->getSynapses();
|
||||
$this->assertCount(3, $synapses);
|
||||
|
||||
$synapsesNodes = $this->getSynapsesNodes($synapses);
|
||||
foreach ($layers[0]->getNodes() as $prevNode) {
|
||||
$this->assertContains($prevNode, $synapsesNodes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $synapses
|
||||
*
|
||||
* @return array
|
||||
*/
|
||||
private function getSynapsesNodes(array $synapses): array
|
||||
{
|
||||
$nodes = [];
|
||||
foreach ($synapses as $synapse) {
|
||||
$nodes[] = $synapse->getNode();
|
||||
}
|
||||
|
||||
return $nodes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @expectedException \Phpml\Exception\InvalidArgumentException
|
||||
*/
|
||||
public function testThrowExceptionOnInvalidLayersNumber()
|
||||
{
|
||||
new MultilayerPerceptron([2]);
|
||||
}
|
||||
}
|
@ -46,7 +46,7 @@ class NeuronTest extends TestCase
|
||||
|
||||
$this->assertEquals(0.5, $neuron->getOutput(), '', 0.01);
|
||||
|
||||
$neuron->refresh();
|
||||
$neuron->reset();
|
||||
|
||||
$this->assertEquals(0.88, $neuron->getOutput(), '', 0.01);
|
||||
}
|
||||
|
@ -1,30 +0,0 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace tests\Phpml\NeuralNetwork\Training;
|
||||
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
use Phpml\NeuralNetwork\Training\Backpropagation;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class BackpropagationTest extends TestCase
|
||||
{
|
||||
public function testBackpropagationForXORLearning()
|
||||
{
|
||||
$network = new MultilayerPerceptron([2, 2, 1]);
|
||||
$training = new Backpropagation($network);
|
||||
|
||||
$training->train(
|
||||
[[1, 0], [0, 1], [1, 1], [0, 0]],
|
||||
[[1], [1], [0], [0]],
|
||||
$desiredError = 0.3,
|
||||
40000
|
||||
);
|
||||
|
||||
$this->assertEquals(0, $network->setInput([1, 1])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(0, $network->setInput([0, 0])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(1, $network->setInput([1, 0])->getOutput()[0], '', $desiredError);
|
||||
$this->assertEquals(1, $network->setInput([0, 1])->getOutput()[0], '', $desiredError);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user