mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-23 15:18:24 +00:00
creat docs files
This commit is contained in:
parent
83b4a9e19c
commit
5be2147784
37
docs/index.md
Normal file
37
docs/index.md
Normal file
@ -0,0 +1,37 @@
|
||||
# PHP Machine Learning (PHP-ML)
|
||||
|
||||
[![Build Status](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/build.png?b=develop)](https://scrutinizer-ci.com/g/php-ai/php-ml/build-status/develop)
|
||||
[![Total Downloads](https://poser.pugx.org/php-ai/php-ml/downloads.svg)](https://packagist.org/packages/php-ai/php-ml)
|
||||
[![License](https://poser.pugx.org/php-ai/php-ml/license.svg)](https://packagist.org/packages/php-ai/php-ml)
|
||||
[![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/quality-score.png?b=develop)](https://scrutinizer-ci.com/g/php-ai/php-ml/?branch=develop)
|
||||
|
||||
Fresh approach to machine learning in PHP. Note that at the moment PHP is not the best choice for machine learning but maybe this will change ...
|
||||
|
||||
## Installation
|
||||
|
||||
Currently this library is in the process of developing, but You can install it with Composer:
|
||||
|
||||
```
|
||||
composer require php-ai/php-ml
|
||||
```
|
||||
|
||||
## To-Do
|
||||
|
||||
* implements more algorithms
|
||||
* integration with Lavacharts for data visualization
|
||||
|
||||
## Testing
|
||||
|
||||
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with composer)
|
||||
|
||||
```
|
||||
bin/phpunit
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
PHP-ML is released under the MIT Licence. See the bundled LICENSE file for details.
|
||||
|
||||
## Author
|
||||
|
||||
Arkadiusz Kondas (@ArkadiuszKondas)
|
35
docs/machine-learning/classification/knearestneighbors.md
Normal file
35
docs/machine-learning/classification/knearestneighbors.md
Normal file
@ -0,0 +1,35 @@
|
||||
# KNearestNeighbors Classifier
|
||||
|
||||
Classifier implementing the k-nearest neighbors algorithm.
|
||||
|
||||
### Constructor Parameters
|
||||
|
||||
* $k - number of nearest neighbors to scan (default: 3)
|
||||
|
||||
```
|
||||
$classifier = new KNearestNeighbors($k=4);
|
||||
```
|
||||
|
||||
### Train
|
||||
|
||||
To train a classifier simply provide train samples and labels (as `array`):
|
||||
|
||||
```
|
||||
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
||||
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
||||
|
||||
$classifier = new KNearestNeighbors();
|
||||
$classifier->train($samples, $labels);
|
||||
```
|
||||
|
||||
### Predict
|
||||
|
||||
To predict sample class use `predict` method. You can provide one sample or array of samples:
|
||||
|
||||
```
|
||||
$classifier->predict([3, 2]);
|
||||
// return 'b'
|
||||
|
||||
$classifier->predict([[3, 2], [1, 5]]);
|
||||
// return ['b', 'a']
|
||||
```
|
29
docs/machine-learning/cross-validation/randomsplit.md
Normal file
29
docs/machine-learning/cross-validation/randomsplit.md
Normal file
@ -0,0 +1,29 @@
|
||||
# RandomSplit
|
||||
|
||||
One of the simplest methods from Cross-validation is implemented as `RandomSpilt` class. Samples are split to two groups: train group and test group. You can adjust number of samples in each group.
|
||||
|
||||
### Constructor Parameters
|
||||
|
||||
* $dataset - object that implements `Dataset` interface
|
||||
* $testSize - a fraction of test split (float, from 0 to 1, default: 0.3)
|
||||
* $seed - seed for random generator (for tests)
|
||||
|
||||
```
|
||||
$randomSplit = new RandomSplit($dataset, 0.2);
|
||||
```
|
||||
|
||||
### Samples and labels groups
|
||||
|
||||
To get samples or labels from test and train group you can use getters:
|
||||
|
||||
```
|
||||
$dataset = new RandomSplit($dataset, 0.3, 1234);
|
||||
|
||||
// train group
|
||||
$dataset->getTrainSamples();
|
||||
$dataset->getTrainLabels();
|
||||
|
||||
// test group
|
||||
$dataset->getTestSamples();
|
||||
$dataset->getTestLabels();
|
||||
```
|
21
docs/machine-learning/datasets/array-dataset.md
Normal file
21
docs/machine-learning/datasets/array-dataset.md
Normal file
@ -0,0 +1,21 @@
|
||||
# ArrayDataset
|
||||
|
||||
Helper class that holds data as PHP `array` type. Implements the `Dataset` interface which is used heavily in other classes.
|
||||
|
||||
### Constructors Parameters
|
||||
|
||||
* $samples - (array) of samples
|
||||
* $labels - (array) of labels
|
||||
|
||||
```
|
||||
$dataset = new ArrayDataset([[1, 1], [2, 1], [3, 2], [4, 1]], ['a', 'a', 'b', 'b']);
|
||||
```
|
||||
|
||||
### Samples and labels
|
||||
|
||||
To get samples or labels you can use getters:
|
||||
|
||||
```
|
||||
$dataset->getSamples();
|
||||
$dataset->getLabels();
|
||||
```
|
15
docs/machine-learning/datasets/csv-dataset.md
Normal file
15
docs/machine-learning/datasets/csv-dataset.md
Normal file
@ -0,0 +1,15 @@
|
||||
# CsvDataset
|
||||
|
||||
Helper class that loads data from CSV file. It extends the `ArrayDataset`.
|
||||
|
||||
### Constructors Parameters
|
||||
|
||||
* $filepath - (string) path to `.csv` file
|
||||
* $features - (int) number of columns that are features (starts from first column), last column must be a label
|
||||
* $headingRow - (bool) define is file have a heading row (if `true` then first row will be ignored)
|
||||
|
||||
```
|
||||
$dataset = new CsvDataset('dataset.csv', 2, true);
|
||||
```
|
||||
|
||||
See Array Dataset for more information.
|
34
docs/machine-learning/datasets/demo/iris.md
Normal file
34
docs/machine-learning/datasets/demo/iris.md
Normal file
@ -0,0 +1,34 @@
|
||||
# Iris Dataset
|
||||
|
||||
Most popular and widely available dataset of iris flower measurement and class names.
|
||||
|
||||
### Specification
|
||||
|
||||
| Classes | 3 |
|
||||
| Samples per class | 50 |
|
||||
| Samples total | 150 |
|
||||
| Features per sample | 4 |
|
||||
|
||||
### Load
|
||||
|
||||
To load Iris dataset simple use:
|
||||
|
||||
```
|
||||
$dataset = new Iris();
|
||||
```
|
||||
|
||||
### Several samples
|
||||
|
||||
```
|
||||
sepal length,sepal width,petal length,petal width,class
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginicacs
|
||||
```
|
24
docs/machine-learning/metric/accuracy.md
Normal file
24
docs/machine-learning/metric/accuracy.md
Normal file
@ -0,0 +1,24 @@
|
||||
# Accuracy
|
||||
|
||||
Class for calculate classifier accuracy.
|
||||
|
||||
### Score
|
||||
|
||||
To calculate classifier accuracy score use `score` static method. Parametrs:
|
||||
|
||||
* $actualLabels - (array) true sample labels
|
||||
* $predictedLabels - (array) predicted labels (e.x. from test group)
|
||||
* $normalize - (bool) normalize or not the result (default: true)
|
||||
|
||||
### Example
|
||||
|
||||
```
|
||||
$actualLabels = ['a', 'b', 'a', 'b'];
|
||||
$predictedLabels = ['a', 'a', 'a', 'b'];
|
||||
|
||||
Accuracy::score($actualLabels, $predictedLabels);
|
||||
// return 0.75
|
||||
|
||||
Accuracy::score($actualLabels, $predictedLabels, false);
|
||||
// return 3
|
||||
```
|
17
docs/machine-learning/metric/distance.md
Normal file
17
docs/machine-learning/metric/distance.md
Normal file
@ -0,0 +1,17 @@
|
||||
# Distance
|
||||
|
||||
Special class for calculation of different types of distance.
|
||||
|
||||
### Euclidean
|
||||
|
||||
![euclidean](https://upload.wikimedia.org/math/8/4/9/849f040fd10bb86f7c85eb0bbe3566a4.png "Euclidean Distance")
|
||||
|
||||
To calculate euclidean distance:
|
||||
|
||||
```
|
||||
$a = [4, 6];
|
||||
$b = [2, 5];
|
||||
|
||||
Distance::euclidean($a, $b);
|
||||
// return 2.2360679774998
|
||||
```
|
17
mkdocs.yml
Normal file
17
mkdocs.yml
Normal file
@ -0,0 +1,17 @@
|
||||
site_name: PHP Machine Learning (PHP-ML)
|
||||
pages:
|
||||
- Home: index.md
|
||||
- Machine Learning:
|
||||
- Classification:
|
||||
- KNearestNeighbors: machine-learning/classification/knearestneighbors.md
|
||||
- Cross Validation:
|
||||
- RandomSplit: machine-learning/cross-validation/randomsplit.md
|
||||
- Datasets:
|
||||
- Array Dataset: machine-learning/datasets/array-dataset.md
|
||||
- CSV Dataset: machine-learning/datasets/csv-dataset.md
|
||||
- Demo:
|
||||
- Iris: machine-learning/datasets/demo/iris.md
|
||||
- Metric:
|
||||
- Accuracy: machine-learning/metric/accuracy.md
|
||||
- Distance: machine-learning/metric/distance.md
|
||||
theme: readthedocs
|
@ -32,10 +32,10 @@ class RandomSplitTest extends \PHPUnit_Framework_TestCase
|
||||
$labels = ['a', 'a', 'b', 'b']
|
||||
);
|
||||
|
||||
$randomSplit1 = new RandomSplit($dataset, 0.5);
|
||||
$randomSplit = new RandomSplit($dataset, 0.5);
|
||||
|
||||
$this->assertEquals(2, count($randomSplit1->getTestSamples()));
|
||||
$this->assertEquals(2, count($randomSplit1->getTrainSamples()));
|
||||
$this->assertEquals(2, count($randomSplit->getTestSamples()));
|
||||
$this->assertEquals(2, count($randomSplit->getTrainSamples()));
|
||||
|
||||
$randomSplit2 = new RandomSplit($dataset, 0.25);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user