mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-24 13:57:33 +00:00
Throw proper exception (#259)
* Throw proper exception * Fix coding style
This commit is contained in:
parent
a40c50b48b
commit
66ca874062
@ -4,10 +4,10 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification\Ensemble;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Classification\Classifier;
|
||||
use Phpml\Classification\Linear\DecisionStump;
|
||||
use Phpml\Classification\WeightedClassifier;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\Helper\Trainable;
|
||||
use Phpml\Math\Statistic\Mean;
|
||||
@ -93,14 +93,14 @@ class AdaBoost implements Classifier
|
||||
}
|
||||
|
||||
/**
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function train(array $samples, array $targets): void
|
||||
{
|
||||
// Initialize usual variables
|
||||
$this->labels = array_keys(array_count_values($targets));
|
||||
if (count($this->labels) != 2) {
|
||||
throw new Exception('AdaBoost is a binary classifier and can classify between two classes only');
|
||||
throw new InvalidArgumentException('AdaBoost is a binary classifier and can classify between two classes only');
|
||||
}
|
||||
|
||||
// Set all target values to either -1 or 1
|
||||
|
@ -4,9 +4,9 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification\Ensemble;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Classification\Classifier;
|
||||
use Phpml\Classification\DecisionTree;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\Helper\Trainable;
|
||||
use ReflectionClass;
|
||||
@ -77,12 +77,12 @@ class Bagging implements Classifier
|
||||
*
|
||||
* @return $this
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function setSubsetRatio(float $ratio)
|
||||
{
|
||||
if ($ratio < 0.1 || $ratio > 1.0) {
|
||||
throw new Exception('Subset ratio should be between 0.1 and 1.0');
|
||||
throw new InvalidArgumentException('Subset ratio should be between 0.1 and 1.0');
|
||||
}
|
||||
|
||||
$this->subsetRatio = $ratio;
|
||||
|
@ -4,7 +4,7 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification\Linear;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
|
||||
class Adaline extends Perceptron
|
||||
{
|
||||
@ -34,7 +34,7 @@ class Adaline extends Perceptron
|
||||
* If normalizeInputs is set to true, then every input given to the algorithm will be standardized
|
||||
* by use of standard deviation and mean calculation
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(
|
||||
float $learningRate = 0.001,
|
||||
@ -43,7 +43,7 @@ class Adaline extends Perceptron
|
||||
int $trainingType = self::BATCH_TRAINING
|
||||
) {
|
||||
if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING], true)) {
|
||||
throw new Exception('Adaline can only be trained with batch and online/stochastic gradient descent algorithm');
|
||||
throw new InvalidArgumentException('Adaline can only be trained with batch and online/stochastic gradient descent algorithm');
|
||||
}
|
||||
|
||||
$this->trainingType = $trainingType;
|
||||
|
@ -4,9 +4,9 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification\Linear;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Classification\DecisionTree;
|
||||
use Phpml\Classification\WeightedClassifier;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\OneVsRest;
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\Math\Comparison;
|
||||
@ -104,7 +104,7 @@ class DecisionStump extends WeightedClassifier
|
||||
}
|
||||
|
||||
/**
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
protected function trainBinary(array $samples, array $targets, array $labels): void
|
||||
{
|
||||
@ -121,7 +121,7 @@ class DecisionStump extends WeightedClassifier
|
||||
if (!empty($this->weights)) {
|
||||
$numWeights = count($this->weights);
|
||||
if ($numWeights != count($samples)) {
|
||||
throw new Exception('Number of sample weights does not match with number of samples');
|
||||
throw new InvalidArgumentException('Number of sample weights does not match with number of samples');
|
||||
}
|
||||
} else {
|
||||
$this->weights = array_fill(0, count($samples), 1);
|
||||
|
@ -6,6 +6,7 @@ namespace Phpml\Classification\Linear;
|
||||
|
||||
use Closure;
|
||||
use Exception;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\Optimizer\ConjugateGradient;
|
||||
|
||||
class LogisticRegression extends Adaline
|
||||
@ -61,7 +62,7 @@ class LogisticRegression extends Adaline
|
||||
*
|
||||
* Penalty (Regularization term) can be 'L2' or empty string to cancel penalty term
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(
|
||||
int $maxIterations = 500,
|
||||
@ -72,18 +73,24 @@ class LogisticRegression extends Adaline
|
||||
) {
|
||||
$trainingTypes = range(self::BATCH_TRAINING, self::CONJUGATE_GRAD_TRAINING);
|
||||
if (!in_array($trainingType, $trainingTypes, true)) {
|
||||
throw new Exception('Logistic regression can only be trained with '.
|
||||
throw new InvalidArgumentException(
|
||||
'Logistic regression can only be trained with '.
|
||||
'batch (gradient descent), online (stochastic gradient descent) '.
|
||||
'or conjugate batch (conjugate gradients) algorithms');
|
||||
'or conjugate batch (conjugate gradients) algorithms'
|
||||
);
|
||||
}
|
||||
|
||||
if (!in_array($cost, ['log', 'sse'], true)) {
|
||||
throw new Exception("Logistic regression cost function can be one of the following: \n".
|
||||
"'log' for log-likelihood and 'sse' for sum of squared errors");
|
||||
throw new InvalidArgumentException(
|
||||
"Logistic regression cost function can be one of the following: \n".
|
||||
"'log' for log-likelihood and 'sse' for sum of squared errors"
|
||||
);
|
||||
}
|
||||
|
||||
if ($penalty != '' && strtoupper($penalty) !== 'L2') {
|
||||
throw new Exception("Logistic regression supports only 'L2' regularization");
|
||||
throw new InvalidArgumentException(
|
||||
"Logistic regression supports only 'L2' regularization"
|
||||
);
|
||||
}
|
||||
|
||||
$this->learningRate = 0.001;
|
||||
@ -140,7 +147,8 @@ class LogisticRegression extends Adaline
|
||||
return;
|
||||
|
||||
default:
|
||||
throw new Exception('Logistic regression has invalid training type: %s.', $this->trainingType);
|
||||
// Not reached
|
||||
throw new Exception(sprintf('Logistic regression has invalid training type: %d.', $this->trainingType));
|
||||
}
|
||||
}
|
||||
|
||||
@ -232,6 +240,7 @@ class LogisticRegression extends Adaline
|
||||
return $callback;
|
||||
|
||||
default:
|
||||
// Not reached
|
||||
throw new Exception(sprintf('Logistic regression has invalid cost function: %s.', $this->costFunction));
|
||||
}
|
||||
}
|
||||
|
@ -5,8 +5,8 @@ declare(strict_types=1);
|
||||
namespace Phpml\Classification\Linear;
|
||||
|
||||
use Closure;
|
||||
use Exception;
|
||||
use Phpml\Classification\Classifier;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\OneVsRest;
|
||||
use Phpml\Helper\Optimizer\GD;
|
||||
use Phpml\Helper\Optimizer\StochasticGD;
|
||||
@ -70,16 +70,16 @@ class Perceptron implements Classifier, IncrementalEstimator
|
||||
* @param float $learningRate Value between 0.0(exclusive) and 1.0(inclusive)
|
||||
* @param int $maxIterations Must be at least 1
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, bool $normalizeInputs = true)
|
||||
{
|
||||
if ($learningRate <= 0.0 || $learningRate > 1.0) {
|
||||
throw new Exception('Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive)');
|
||||
throw new InvalidArgumentException('Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive)');
|
||||
}
|
||||
|
||||
if ($maxIterations <= 0) {
|
||||
throw new Exception('Maximum number of iterations must be an integer greater than 0');
|
||||
throw new InvalidArgumentException('Maximum number of iterations must be an integer greater than 0');
|
||||
}
|
||||
|
||||
if ($normalizeInputs) {
|
||||
|
@ -6,6 +6,8 @@ namespace Phpml\DimensionReduction;
|
||||
|
||||
use Closure;
|
||||
use Exception;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use Phpml\Math\Distance\Euclidean;
|
||||
use Phpml\Math\Distance\Manhattan;
|
||||
use Phpml\Math\Matrix;
|
||||
@ -53,13 +55,13 @@ class KernelPCA extends PCA
|
||||
* @param int $numFeatures Number of columns to be returned
|
||||
* @param float $gamma Gamma parameter is used with RBF and Sigmoid kernels
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(int $kernel = self::KERNEL_RBF, ?float $totalVariance = null, ?int $numFeatures = null, ?float $gamma = null)
|
||||
{
|
||||
$availableKernels = [self::KERNEL_RBF, self::KERNEL_SIGMOID, self::KERNEL_LAPLACIAN, self::KERNEL_LINEAR];
|
||||
if (!in_array($kernel, $availableKernels, true)) {
|
||||
throw new Exception('KernelPCA can be initialized with the following kernels only: Linear, RBF, Sigmoid and Laplacian');
|
||||
throw new InvalidArgumentException('KernelPCA can be initialized with the following kernels only: Linear, RBF, Sigmoid and Laplacian');
|
||||
}
|
||||
|
||||
parent::__construct($totalVariance, $numFeatures);
|
||||
@ -97,16 +99,17 @@ class KernelPCA extends PCA
|
||||
* Transforms the given sample to a lower dimensional vector by using
|
||||
* the variables obtained during the last run of <code>fit</code>.
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
* @throws InvalidOperationException
|
||||
*/
|
||||
public function transform(array $sample): array
|
||||
{
|
||||
if (!$this->fit) {
|
||||
throw new Exception('KernelPCA has not been fitted with respect to original dataset, please run KernelPCA::fit() first');
|
||||
throw new InvalidOperationException('KernelPCA has not been fitted with respect to original dataset, please run KernelPCA::fit() first');
|
||||
}
|
||||
|
||||
if (is_array($sample[0])) {
|
||||
throw new Exception('KernelPCA::transform() accepts only one-dimensional arrays');
|
||||
throw new InvalidArgumentException('KernelPCA::transform() accepts only one-dimensional arrays');
|
||||
}
|
||||
|
||||
$pairs = $this->getDistancePairs($sample);
|
||||
@ -199,6 +202,7 @@ class KernelPCA extends PCA
|
||||
};
|
||||
|
||||
default:
|
||||
// Not reached
|
||||
throw new Exception(sprintf('KernelPCA initialized with invalid kernel: %d', $this->kernel));
|
||||
}
|
||||
}
|
||||
|
@ -4,7 +4,8 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\DimensionReduction;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use Phpml\Math\Matrix;
|
||||
|
||||
class LDA extends EigenTransformerBase
|
||||
@ -46,20 +47,20 @@ class LDA extends EigenTransformerBase
|
||||
* @param float|null $totalVariance Total explained variance to be preserved
|
||||
* @param int|null $numFeatures Number of features to be preserved
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(?float $totalVariance = null, ?int $numFeatures = null)
|
||||
{
|
||||
if ($totalVariance !== null && ($totalVariance < 0.1 || $totalVariance > 0.99)) {
|
||||
throw new Exception('Total variance can be a value between 0.1 and 0.99');
|
||||
throw new InvalidArgumentException('Total variance can be a value between 0.1 and 0.99');
|
||||
}
|
||||
|
||||
if ($numFeatures !== null && $numFeatures <= 0) {
|
||||
throw new Exception('Number of features to be preserved should be greater than 0');
|
||||
throw new InvalidArgumentException('Number of features to be preserved should be greater than 0');
|
||||
}
|
||||
|
||||
if ($totalVariance !== null && $numFeatures !== null) {
|
||||
throw new Exception('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
||||
if (($totalVariance !== null) === ($numFeatures !== null)) {
|
||||
throw new InvalidArgumentException('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
||||
}
|
||||
|
||||
if ($numFeatures !== null) {
|
||||
@ -94,12 +95,12 @@ class LDA extends EigenTransformerBase
|
||||
* Transforms the given sample to a lower dimensional vector by using
|
||||
* the eigenVectors obtained in the last run of <code>fit</code>.
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidOperationException
|
||||
*/
|
||||
public function transform(array $sample): array
|
||||
{
|
||||
if (!$this->fit) {
|
||||
throw new Exception('LDA has not been fitted with respect to original dataset, please run LDA::fit() first');
|
||||
throw new InvalidOperationException('LDA has not been fitted with respect to original dataset, please run LDA::fit() first');
|
||||
}
|
||||
|
||||
if (!is_array($sample[0])) {
|
||||
|
@ -4,7 +4,8 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\DimensionReduction;
|
||||
|
||||
use Exception;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use Phpml\Math\Statistic\Covariance;
|
||||
use Phpml\Math\Statistic\Mean;
|
||||
|
||||
@ -31,20 +32,20 @@ class PCA extends EigenTransformerBase
|
||||
* @param float $totalVariance Total explained variance to be preserved
|
||||
* @param int $numFeatures Number of features to be preserved
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidArgumentException
|
||||
*/
|
||||
public function __construct(?float $totalVariance = null, ?int $numFeatures = null)
|
||||
{
|
||||
if ($totalVariance !== null && ($totalVariance < 0.1 || $totalVariance > 0.99)) {
|
||||
throw new Exception('Total variance can be a value between 0.1 and 0.99');
|
||||
throw new InvalidArgumentException('Total variance can be a value between 0.1 and 0.99');
|
||||
}
|
||||
|
||||
if ($numFeatures !== null && $numFeatures <= 0) {
|
||||
throw new Exception('Number of features to be preserved should be greater than 0');
|
||||
throw new InvalidArgumentException('Number of features to be preserved should be greater than 0');
|
||||
}
|
||||
|
||||
if ($totalVariance !== null && $numFeatures !== null) {
|
||||
throw new Exception('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
||||
if (($totalVariance !== null) === ($numFeatures !== null)) {
|
||||
throw new InvalidArgumentException('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
||||
}
|
||||
|
||||
if ($numFeatures !== null) {
|
||||
@ -81,12 +82,12 @@ class PCA extends EigenTransformerBase
|
||||
* Transforms the given sample to a lower dimensional vector by using
|
||||
* the eigenVectors obtained in the last run of <code>fit</code>.
|
||||
*
|
||||
* @throws \Exception
|
||||
* @throws InvalidOperationException
|
||||
*/
|
||||
public function transform(array $sample): array
|
||||
{
|
||||
if (!$this->fit) {
|
||||
throw new Exception('PCA has not been fitted with respect to original dataset, please run PCA::fit() first');
|
||||
throw new InvalidOperationException('PCA has not been fitted with respect to original dataset, please run PCA::fit() first');
|
||||
}
|
||||
|
||||
if (!is_array($sample[0])) {
|
||||
|
@ -5,12 +5,32 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\Classification\Ensemble;
|
||||
|
||||
use Phpml\Classification\Ensemble\AdaBoost;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class AdaBoostTest extends TestCase
|
||||
{
|
||||
public function testPredictSingleSample()
|
||||
public function testTrainThrowWhenMultiClassTargetGiven(): void
|
||||
{
|
||||
$samples = [
|
||||
[0, 0],
|
||||
[0.5, 0.5],
|
||||
[1, 1],
|
||||
];
|
||||
$targets = [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
];
|
||||
|
||||
$classifier = new AdaBoost();
|
||||
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier->train($samples, $targets);
|
||||
}
|
||||
|
||||
public function testPredictSingleSample(): void
|
||||
{
|
||||
// AND problem
|
||||
$samples = [[0.1, 0.3], [1, 0], [0, 1], [1, 1], [0.9, 0.8], [1.1, 1.1]];
|
||||
@ -38,8 +58,6 @@ class AdaBoostTest extends TestCase
|
||||
$this->assertEquals(0, $classifier->predict([0.1, 0.1]));
|
||||
$this->assertEquals(1, $classifier->predict([0, 0.999]));
|
||||
$this->assertEquals(0, $classifier->predict([1.1, 0.8]));
|
||||
|
||||
return $classifier;
|
||||
}
|
||||
|
||||
public function testSaveAndRestore(): void
|
||||
|
@ -7,6 +7,7 @@ namespace Phpml\Tests\Classification\Ensemble;
|
||||
use Phpml\Classification\DecisionTree;
|
||||
use Phpml\Classification\Ensemble\Bagging;
|
||||
use Phpml\Classification\NaiveBayes;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
@ -34,7 +35,15 @@ class BaggingTest extends TestCase
|
||||
['scorching', 0, 0, 'false', 'Dont_play'],
|
||||
];
|
||||
|
||||
public function testPredictSingleSample()
|
||||
public function testSetSubsetRatioThrowWhenRatioOutOfBounds(): void
|
||||
{
|
||||
$classifier = $this->getClassifier();
|
||||
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier->setSubsetRatio(0);
|
||||
}
|
||||
|
||||
public function testPredictSingleSample(): void
|
||||
{
|
||||
[$data, $targets] = $this->getData($this->data);
|
||||
$classifier = $this->getClassifier();
|
||||
@ -48,8 +57,6 @@ class BaggingTest extends TestCase
|
||||
$classifier->train($data, $targets);
|
||||
$this->assertEquals('Dont_play', $classifier->predict(['scorching', 95, 90, 'true']));
|
||||
$this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false']));
|
||||
|
||||
return $classifier;
|
||||
}
|
||||
|
||||
public function testSaveAndRestore(): void
|
||||
|
@ -5,11 +5,23 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\Classification\Linear;
|
||||
|
||||
use Phpml\Classification\Linear\Adaline;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class AdalineTest extends TestCase
|
||||
{
|
||||
public function testAdalineThrowWhenInvalidTrainingType(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier = new Adaline(
|
||||
0.001,
|
||||
1000,
|
||||
true,
|
||||
0
|
||||
);
|
||||
}
|
||||
|
||||
public function testPredictSingleSample(): void
|
||||
{
|
||||
// AND problem
|
||||
|
@ -5,11 +5,24 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\Classification\Linear;
|
||||
|
||||
use Phpml\Classification\Linear\DecisionStump;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class DecisionStumpTest extends TestCase
|
||||
{
|
||||
public function testTrainThrowWhenSample(): void
|
||||
{
|
||||
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
||||
$targets = [0, 0, 1, 1];
|
||||
|
||||
$classifier = new DecisionStump();
|
||||
$classifier->setSampleWeights([0.1, 0.1, 0.1]);
|
||||
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier->train($samples, $targets);
|
||||
}
|
||||
|
||||
public function testPredictSingleSample()
|
||||
{
|
||||
// Samples should be separable with a line perpendicular
|
||||
|
@ -5,16 +5,16 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\Classification\Linear;
|
||||
|
||||
use Phpml\Classification\Linear\LogisticRegression;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
use ReflectionMethod;
|
||||
use ReflectionProperty;
|
||||
use Throwable;
|
||||
|
||||
class LogisticRegressionTest extends TestCase
|
||||
{
|
||||
public function testConstructorThrowWhenInvalidTrainingType(): void
|
||||
{
|
||||
$this->expectException(Throwable::class);
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
|
||||
$classifier = new LogisticRegression(
|
||||
500,
|
||||
@ -27,7 +27,7 @@ class LogisticRegressionTest extends TestCase
|
||||
|
||||
public function testConstructorThrowWhenInvalidCost(): void
|
||||
{
|
||||
$this->expectException(Throwable::class);
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
|
||||
$classifier = new LogisticRegression(
|
||||
500,
|
||||
@ -40,7 +40,7 @@ class LogisticRegressionTest extends TestCase
|
||||
|
||||
public function testConstructorThrowWhenInvalidPenalty(): void
|
||||
{
|
||||
$this->expectException(Throwable::class);
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
|
||||
$classifier = new LogisticRegression(
|
||||
500,
|
||||
|
@ -5,11 +5,24 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\Classification\Linear;
|
||||
|
||||
use Phpml\Classification\Linear\Perceptron;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class PerceptronTest extends TestCase
|
||||
{
|
||||
public function testPerceptronThrowWhenLearningRateOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier = new Perceptron(0, 5000);
|
||||
}
|
||||
|
||||
public function testPerceptronThrowWhenMaxIterationsOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$classifier = new Perceptron(0.001, 0);
|
||||
}
|
||||
|
||||
public function testPredictSingleSample(): void
|
||||
{
|
||||
// AND problem
|
||||
|
@ -5,6 +5,8 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\DimensionReduction;
|
||||
|
||||
use Phpml\DimensionReduction\KernelPCA;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class KernelPCATest extends TestCase
|
||||
@ -48,4 +50,34 @@ class KernelPCATest extends TestCase
|
||||
$newTransformed2 = $kpca->transform($newData);
|
||||
$this->assertEquals(abs($newTransformed[0]), abs($newTransformed2[0]), '', $epsilon);
|
||||
}
|
||||
|
||||
public function testKernelPCAThrowWhenKernelInvalid(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$kpca = new KernelPCA(0, null, 1, 15);
|
||||
}
|
||||
|
||||
public function testTransformThrowWhenNotFitted(): void
|
||||
{
|
||||
$samples = [1, 0];
|
||||
|
||||
$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 1, 15);
|
||||
|
||||
$this->expectException(InvalidOperationException::class);
|
||||
$kpca->transform($samples);
|
||||
}
|
||||
|
||||
public function testTransformThrowWhenMultiDimensionalArrayGiven(): void
|
||||
{
|
||||
$samples = [
|
||||
[1, 0],
|
||||
[1, 1],
|
||||
];
|
||||
|
||||
$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 1, 15);
|
||||
$kpca->fit($samples);
|
||||
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$kpca->transform($samples);
|
||||
}
|
||||
}
|
||||
|
@ -6,6 +6,8 @@ namespace Phpml\Tests\DimensionReduction;
|
||||
|
||||
use Phpml\Dataset\Demo\IrisDataset;
|
||||
use Phpml\DimensionReduction\LDA;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class LDATest extends TestCase
|
||||
@ -62,4 +64,41 @@ class LDATest extends TestCase
|
||||
array_map($check, $newRow, $newRow2);
|
||||
}
|
||||
}
|
||||
|
||||
public function testLDAThrowWhenTotalVarianceOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new LDA(0, null);
|
||||
}
|
||||
|
||||
public function testLDAThrowWhenNumFeaturesOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new LDA(null, 0);
|
||||
}
|
||||
|
||||
public function testLDAThrowWhenParameterNotSpecified(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new LDA();
|
||||
}
|
||||
|
||||
public function testLDAThrowWhenBothParameterSpecified(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new LDA(0.9, 1);
|
||||
}
|
||||
|
||||
public function testTransformThrowWhenNotFitted(): void
|
||||
{
|
||||
$samples = [
|
||||
[1, 0],
|
||||
[1, 1],
|
||||
];
|
||||
|
||||
$pca = new LDA(0.9);
|
||||
|
||||
$this->expectException(InvalidOperationException::class);
|
||||
$pca->transform($samples);
|
||||
}
|
||||
}
|
||||
|
@ -5,6 +5,8 @@ declare(strict_types=1);
|
||||
namespace Phpml\Tests\DimensionReduction;
|
||||
|
||||
use Phpml\DimensionReduction\PCA;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Exception\InvalidOperationException;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
class PCATest extends TestCase
|
||||
@ -54,4 +56,41 @@ class PCATest extends TestCase
|
||||
}, $newRow, $newRow2);
|
||||
}
|
||||
}
|
||||
|
||||
public function testPCAThrowWhenTotalVarianceOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new PCA(0, null);
|
||||
}
|
||||
|
||||
public function testPCAThrowWhenNumFeaturesOutOfRange(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new PCA(null, 0);
|
||||
}
|
||||
|
||||
public function testPCAThrowWhenParameterNotSpecified(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new PCA();
|
||||
}
|
||||
|
||||
public function testPCAThrowWhenBothParameterSpecified(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$pca = new PCA(0.9, 1);
|
||||
}
|
||||
|
||||
public function testTransformThrowWhenNotFitted(): void
|
||||
{
|
||||
$samples = [
|
||||
[1, 0],
|
||||
[1, 1],
|
||||
];
|
||||
|
||||
$pca = new PCA(0.9);
|
||||
|
||||
$this->expectException(InvalidOperationException::class);
|
||||
$pca->transform($samples);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user