diff --git a/src/Phpml/Classification/DecisionTree.php b/src/Phpml/Classification/DecisionTree.php new file mode 100644 index 0000000..033b22b --- /dev/null +++ b/src/Phpml/Classification/DecisionTree.php @@ -0,0 +1,274 @@ +maxDepth = $maxDepth; + } + /** + * @param array $samples + * @param array $targets + */ + public function train(array $samples, array $targets) + { + $this->featureCount = count($samples[0]); + $this->columnTypes = $this->getColumnTypes($samples); + $this->samples = $samples; + $this->targets = $targets; + $this->labels = array_keys(array_count_values($targets)); + $this->tree = $this->getSplitLeaf(range(0, count($samples) - 1)); + } + + protected function getColumnTypes(array $samples) + { + $types = []; + for ($i=0; $i<$this->featureCount; $i++) { + $values = array_column($samples, $i); + $isCategorical = $this->isCategoricalColumn($values); + $types[] = $isCategorical ? self::NOMINAL : self::CONTINUOS; + } + return $types; + } + + /** + * @param null|array $records + * @return DecisionTreeLeaf + */ + protected function getSplitLeaf($records, $depth = 0) + { + $split = $this->getBestSplit($records); + $split->level = $depth; + if ($this->actualDepth < $depth) { + $this->actualDepth = $depth; + } + $leftRecords = []; + $rightRecords= []; + $remainingTargets = []; + $prevRecord = null; + $allSame = true; + foreach ($records as $recordNo) { + $record = $this->samples[$recordNo]; + if ($prevRecord && $prevRecord != $record) { + $allSame = false; + } + $prevRecord = $record; + if ($split->evaluate($record)) { + $leftRecords[] = $recordNo; + } else { + $rightRecords[]= $recordNo; + } + $target = $this->targets[$recordNo]; + if (! in_array($target, $remainingTargets)) { + $remainingTargets[] = $target; + } + } + + if (count($remainingTargets) == 1 || $allSame || $depth >= $this->maxDepth) { + $split->isTerminal = 1; + $classes = array_count_values($remainingTargets); + arsort($classes); + $split->classValue = key($classes); + } else { + if ($leftRecords) { + $split->leftLeaf = $this->getSplitLeaf($leftRecords, $depth + 1); + } + if ($rightRecords) { + $split->rightLeaf= $this->getSplitLeaf($rightRecords, $depth + 1); + } + } + return $split; + } + + /** + * @param array $records + * @return DecisionTreeLeaf[] + */ + protected function getBestSplit($records) + { + $targets = array_intersect_key($this->targets, array_flip($records)); + $samples = array_intersect_key($this->samples, array_flip($records)); + $samples = array_combine($records, $this->preprocess($samples)); + $bestGiniVal = 1; + $bestSplit = null; + for ($i=0; $i<$this->featureCount; $i++) { + $colValues = []; + $baseValue = null; + foreach ($samples as $index => $row) { + $colValues[$index] = $row[$i]; + if ($baseValue === null) { + $baseValue = $row[$i]; + } + } + $gini = $this->getGiniIndex($baseValue, $colValues, $targets); + if ($bestSplit == null || $bestGiniVal > $gini) { + $split = new DecisionTreeLeaf(); + $split->value = $baseValue; + $split->giniIndex = $gini; + $split->columnIndex = $i; + $split->records = $records; + $bestSplit = $split; + $bestGiniVal = $gini; + } + } + return $bestSplit; + } + + /** + * @param string $baseValue + * @param array $colValues + * @param array $targets + */ + public function getGiniIndex($baseValue, $colValues, $targets) + { + $countMatrix = []; + foreach ($this->labels as $label) { + $countMatrix[$label] = [0, 0]; + } + foreach ($colValues as $index => $value) { + $label = $targets[$index]; + $rowIndex = $value == $baseValue ? 0 : 1; + $countMatrix[$label][$rowIndex]++; + } + $giniParts = [0, 0]; + for ($i=0; $i<=1; $i++) { + $part = 0; + $sum = array_sum(array_column($countMatrix, $i)); + if ($sum > 0) { + foreach ($this->labels as $label) { + $part += pow($countMatrix[$label][$i] / floatval($sum), 2); + } + } + $giniParts[$i] = (1 - $part) * $sum; + } + return array_sum($giniParts) / count($colValues); + } + + /** + * @param array $samples + * @return array + */ + protected function preprocess(array $samples) + { + // Detect and convert continuous data column values into + // discrete values by using the median as a threshold value + $columns = array(); + for ($i=0; $i<$this->featureCount; $i++) { + $values = array_column($samples, $i); + if ($this->columnTypes[$i] == self::CONTINUOS) { + $median = Mean::median($values); + foreach ($values as &$value) { + if ($value <= $median) { + $value = "<= $median"; + } else { + $value = "> $median"; + } + } + } + $columns[] = $values; + } + // Below method is a strange yet very simple & efficient method + // to get the transpose of a 2D array + return array_map(null, ...$columns); + } + + /** + * @param array $columnValues + * @return bool + */ + protected function isCategoricalColumn(array $columnValues) + { + $count = count($columnValues); + // There are two main indicators that *may* show whether a + // column is composed of discrete set of values: + // 1- Column may contain string values + // 2- Number of unique values in the column is only a small fraction of + // all values in that column (Lower than or equal to %20 of all values) + $numericValues = array_filter($columnValues, 'is_numeric'); + if (count($numericValues) != $count) { + return true; + } + $distinctValues = array_count_values($columnValues); + if (count($distinctValues) <= $count / 5) { + return true; + } + return false; + } + + /** + * @return string + */ + public function getHtml() + { + return $this->tree->__toString(); + } + + /** + * @param array $sample + * @return mixed + */ + protected function predictSample(array $sample) + { + $node = $this->tree; + do { + if ($node->isTerminal) { + break; + } + if ($node->evaluate($sample)) { + $node = $node->leftLeaf; + } else { + $node = $node->rightLeaf; + } + } while ($node); + return $node->classValue; + } +} diff --git a/src/Phpml/Classification/DecisionTree/DecisionTreeLeaf.php b/src/Phpml/Classification/DecisionTree/DecisionTreeLeaf.php new file mode 100644 index 0000000..220f876 --- /dev/null +++ b/src/Phpml/Classification/DecisionTree/DecisionTreeLeaf.php @@ -0,0 +1,106 @@ +columnIndex]; + if (preg_match("/^([<>=]{1,2})\s*(.*)/", $this->value, $matches)) { + $op = $matches[1]; + $value= floatval($matches[2]); + $recordField = strval($recordField); + eval("\$result = $recordField $op $value;"); + return $result; + } + return $recordField == $this->value; + } + + public function __toString() + { + if ($this->isTerminal) { + $value = "$this->classValue"; + } else { + $value = $this->value; + $col = "col_$this->columnIndex"; + if (! preg_match("/^[<>=]{1,2}/", $value)) { + $value = "=$value"; + } + $value = "$col $value
Gini: ". number_format($this->giniIndex, 2); + } + $str = ""; + if ($this->leftLeaf || $this->rightLeaf) { + $str .=''; + if ($this->leftLeaf) { + $str .=""; + } else { + $str .=''; + } + $str .=''; + if ($this->rightLeaf) { + $str .=""; + } else { + $str .=''; + } + $str .= ''; + } + $str .= '
+ $value
| Yes
$this->leftLeaf
 No |
$this->rightLeaf
'; + return $str; + } +} diff --git a/src/Phpml/Classification/NaiveBayes.php b/src/Phpml/Classification/NaiveBayes.php index 1f89794..e86a91c 100644 --- a/src/Phpml/Classification/NaiveBayes.php +++ b/src/Phpml/Classification/NaiveBayes.php @@ -68,8 +68,8 @@ class NaiveBayes implements Classifier $this->sampleCount = count($samples); $this->featureCount = count($samples[0]); - $this->labels = $targets; - array_unique($this->labels); + $labelCounts = array_count_values($targets); + $this->labels = array_keys($labelCounts); foreach ($this->labels as $label) { $samples = $this->getSamplesByLabel($label); $this->p[$label] = count($samples) / $this->sampleCount; @@ -165,32 +165,20 @@ class NaiveBayes implements Classifier */ protected function predictSample(array $sample) { - $isArray = is_array($sample[0]); - $samples = $sample; - if (!$isArray) { - $samples = array($sample); - } - $samplePredictions = array(); - foreach ($samples as $sample) { - // Use NaiveBayes assumption for each label using: - // P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label) - // Then compare probability for each class to determine which label is most likely - $predictions = array(); - foreach ($this->labels as $label) { - $p = $this->p[$label]; - for ($i=0; $i<$this->featureCount; $i++) { - $Plf = $this->sampleProbability($sample, $i, $label); - $p += $Plf; - } - $predictions[$label] = $p; + // Use NaiveBayes assumption for each label using: + // P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label) + // Then compare probability for each class to determine which label is most likely + $predictions = array(); + foreach ($this->labels as $label) { + $p = $this->p[$label]; + for ($i=0; $i<$this->featureCount; $i++) { + $Plf = $this->sampleProbability($sample, $i, $label); + $p += $Plf; } - arsort($predictions, SORT_NUMERIC); - reset($predictions); - $samplePredictions[] = key($predictions); + $predictions[$label] = $p; } - if (! $isArray) { - return $samplePredictions[0]; - } - return $samplePredictions; + arsort($predictions, SORT_NUMERIC); + reset($predictions); + return key($predictions); } } diff --git a/src/Phpml/Clustering/FuzzyCMeans.php b/src/Phpml/Clustering/FuzzyCMeans.php new file mode 100644 index 0000000..ed4fd9e --- /dev/null +++ b/src/Phpml/Clustering/FuzzyCMeans.php @@ -0,0 +1,242 @@ +clustersNumber = $clustersNumber; + $this->fuzziness = $fuzziness; + $this->epsilon = $epsilon; + $this->maxIterations = $maxIterations; + } + + protected function initClusters() + { + // Membership array is a matrix of cluster number by sample counts + // We initilize the membership array with random values + $dim = $this->space->getDimension(); + $this->generateRandomMembership($dim, $this->sampleCount); + $this->updateClusters(); + } + + /** + * @param int $rows + * @param int $cols + */ + protected function generateRandomMembership(int $rows, int $cols) + { + $this->membership = []; + for ($i=0; $i < $rows; $i++) { + $row = []; + $total = 0.0; + for ($k=0; $k < $cols; $k++) { + $val = rand(1, 5) / 10.0; + $row[] = $val; + $total += $val; + } + $this->membership[] = array_map(function ($val) use ($total) { + return $val / $total; + }, $row); + } + } + + protected function updateClusters() + { + $dim = $this->space->getDimension(); + if (! $this->clusters) { + $this->clusters = []; + for ($i=0; $i<$this->clustersNumber; $i++) { + $this->clusters[] = new Cluster($this->space, array_fill(0, $dim, 0.0)); + } + } + + for ($i=0; $i<$this->clustersNumber; $i++) { + $cluster = $this->clusters[$i]; + $center = $cluster->getCoordinates(); + for ($k=0; $k<$dim; $k++) { + $a = $this->getMembershipRowTotal($i, $k, true); + $b = $this->getMembershipRowTotal($i, $k, false); + $center[$k] = $a / $b; + } + $cluster->setCoordinates($center); + } + } + + protected function getMembershipRowTotal(int $row, int $col, bool $multiply) + { + $sum = 0.0; + for ($k = 0; $k < $this->sampleCount; $k++) { + $val = pow($this->membership[$row][$k], $this->fuzziness); + if ($multiply) { + $val *= $this->samples[$k][$col]; + } + $sum += $val; + } + return $sum; + } + + protected function updateMembershipMatrix() + { + for ($i = 0; $i < $this->clustersNumber; $i++) { + for ($k = 0; $k < $this->sampleCount; $k++) { + $distCalc = $this->getDistanceCalc($i, $k); + $this->membership[$i][$k] = 1.0 / $distCalc; + } + } + } + + /** + * + * @param int $row + * @param int $col + * @return float + */ + protected function getDistanceCalc(int $row, int $col) + { + $sum = 0.0; + $distance = new Euclidean(); + $dist1 = $distance->distance( + $this->clusters[$row]->getCoordinates(), + $this->samples[$col]); + for ($j = 0; $j < $this->clustersNumber; $j++) { + $dist2 = $distance->distance( + $this->clusters[$j]->getCoordinates(), + $this->samples[$col]); + $val = pow($dist1 / $dist2, 2.0 / ($this->fuzziness - 1)); + $sum += $val; + } + return $sum; + } + + /** + * The objective is to minimize the distance between all data points + * and all cluster centers. This method returns the summation of all + * these distances + */ + protected function getObjective() + { + $sum = 0.0; + $distance = new Euclidean(); + for ($i = 0; $i < $this->clustersNumber; $i++) { + $clust = $this->clusters[$i]->getCoordinates(); + for ($k = 0; $k < $this->sampleCount; $k++) { + $point = $this->samples[$k]; + $sum += $distance->distance($clust, $point); + } + } + return $sum; + } + + /** + * @return array + */ + public function getMembershipMatrix() + { + return $this->membership; + } + + /** + * @param array|Point[] $samples + * @return array + */ + public function cluster(array $samples) + { + // Initialize variables, clusters and membership matrix + $this->sampleCount = count($samples); + $this->samples =& $samples; + $this->space = new Space(count($samples[0])); + $this->initClusters(); + + // Our goal is minimizing the objective value while + // executing the clustering steps at a maximum number of iterations + $lastObjective = 0.0; + $difference = 0.0; + $iterations = 0; + do { + // Update the membership matrix and cluster centers, respectively + $this->updateMembershipMatrix(); + $this->updateClusters(); + + // Calculate the new value of the objective function + $objectiveVal = $this->getObjective(); + $difference = abs($lastObjective - $objectiveVal); + $lastObjective = $objectiveVal; + } while ($difference > $this->epsilon && $iterations++ <= $this->maxIterations); + + // Attach (hard cluster) each data point to the nearest cluster + for ($k=0; $k<$this->sampleCount; $k++) { + $column = array_column($this->membership, $k); + arsort($column); + reset($column); + $i = key($column); + $cluster = $this->clusters[$i]; + $cluster->attach(new Point($this->samples[$k])); + } + + // Return grouped samples + $grouped = []; + foreach ($this->clusters as $cluster) { + $grouped[] = $cluster->getPoints(); + } + return $grouped; + } +} diff --git a/tests/Phpml/Classification/DecisionTreeTest.php b/tests/Phpml/Classification/DecisionTreeTest.php new file mode 100644 index 0000000..c6f307d --- /dev/null +++ b/tests/Phpml/Classification/DecisionTreeTest.php @@ -0,0 +1,60 @@ +data; + $targets = array_column($data, 4); + array_walk($data, function (&$v) { + array_splice($v, 4, 1); + }); + } + return [$data, $targets]; + } + + public function testPredictSingleSample() + { + list($data, $targets) = $this->getData(); + $classifier = new DecisionTree(5); + $classifier->train($data, $targets); + $this->assertEquals('Dont_play', $classifier->predict(['sunny', 78, 72, 'false'])); + $this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false'])); + $this->assertEquals('Dont_play', $classifier->predict(['rain', 60, 60, 'true'])); + + return $classifier; + } + + public function testTreeDepth() + { + list($data, $targets) = $this->getData(); + $classifier = new DecisionTree(5); + $classifier->train($data, $targets); + $this->assertTrue(5 >= $classifier->actualDepth); + } +} diff --git a/tests/Phpml/Clustering/FuzzyCMeansTest.php b/tests/Phpml/Clustering/FuzzyCMeansTest.php new file mode 100644 index 0000000..16d4a97 --- /dev/null +++ b/tests/Phpml/Clustering/FuzzyCMeansTest.php @@ -0,0 +1,43 @@ +cluster($samples); + $this->assertCount(2, $clusters); + foreach ($samples as $index => $sample) { + if (in_array($sample, $clusters[0]) || in_array($sample, $clusters[1])) { + unset($samples[$index]); + } + } + $this->assertCount(0, $samples); + return $fcm; + } + + public function testMembershipMatrix() + { + $fcm = $this->testFCMSamplesClustering(); + $clusterCount = 2; + $sampleCount = 6; + $matrix = $fcm->getMembershipMatrix(); + $this->assertCount($clusterCount, $matrix); + foreach ($matrix as $row) { + $this->assertCount($sampleCount, $row); + } + // Transpose of the matrix + array_unshift($matrix, null); + $matrix = call_user_func_array('array_map', $matrix); + // All column totals should be equal to 1 (100% membership) + foreach ($matrix as $col) { + $this->assertEquals(1, array_sum($col)); + } + } +} \ No newline at end of file