mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-23 23:28:24 +00:00
Add rules for new cs-fixer
This commit is contained in:
parent
87396ebe58
commit
c3686358b3
16
.php_cs
Normal file
16
.php_cs
Normal file
@ -0,0 +1,16 @@
|
||||
<?php
|
||||
|
||||
return PhpCsFixer\Config::create()
|
||||
->setRules([
|
||||
'@PSR2' => true,
|
||||
'declare_strict_types' => true,
|
||||
'array_syntax' => ['syntax' => 'short'],
|
||||
'blank_line_after_opening_tag' => true,
|
||||
'single_blank_line_before_namespace' => true,
|
||||
])
|
||||
->setFinder(
|
||||
PhpCsFixer\Finder::create()
|
||||
->in(__DIR__ . '/src')
|
||||
->in(__DIR__ . '/tests')
|
||||
)->setRiskyAllowed(true)
|
||||
->setUsingCache(false);
|
@ -160,7 +160,7 @@ class Apriori implements Associator
|
||||
$results = [[]];
|
||||
foreach ($sample as $item) {
|
||||
foreach ($results as $combination) {
|
||||
$results[] = array_merge(array($item), $combination);
|
||||
$results[] = array_merge([$item], $combination);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -19,20 +19,23 @@ class DecisionTree implements Classifier
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $samples = array();
|
||||
private $samples = [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $columnTypes;
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $labels = array();
|
||||
private $labels = [];
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $featureCount = 0;
|
||||
|
||||
/**
|
||||
* @var DecisionTreeLeaf
|
||||
*/
|
||||
@ -201,7 +204,7 @@ class DecisionTree implements Classifier
|
||||
{
|
||||
// Detect and convert continuous data column values into
|
||||
// discrete values by using the median as a threshold value
|
||||
$columns = array();
|
||||
$columns = [];
|
||||
for ($i=0; $i<$this->featureCount; $i++) {
|
||||
$values = array_column($samples, $i);
|
||||
if ($this->columnTypes[$i] == self::CONTINUOS) {
|
||||
|
@ -1,4 +1,5 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Classification\DecisionTree;
|
||||
|
@ -150,7 +150,7 @@ class NaiveBayes implements Classifier
|
||||
*/
|
||||
private function getSamplesByLabel($label)
|
||||
{
|
||||
$samples = array();
|
||||
$samples = [];
|
||||
for ($i=0; $i<$this->sampleCount; $i++) {
|
||||
if ($this->targets[$i] == $label) {
|
||||
$samples[] = $this->samples[$i];
|
||||
@ -168,7 +168,7 @@ class NaiveBayes implements Classifier
|
||||
// Use NaiveBayes assumption for each label using:
|
||||
// P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label)
|
||||
// Then compare probability for each class to determine which label is most likely
|
||||
$predictions = array();
|
||||
$predictions = [];
|
||||
foreach ($this->labels as $label) {
|
||||
$p = $this->p[$label];
|
||||
for ($i=0; $i<$this->featureCount; $i++) {
|
||||
|
@ -1,4 +1,5 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Clustering;
|
||||
|
@ -50,10 +50,10 @@ class Cluster extends Point implements IteratorAggregate, Countable
|
||||
*/
|
||||
public function toArray()
|
||||
{
|
||||
return array(
|
||||
return [
|
||||
'centroid' => parent::toArray(),
|
||||
'points' => $this->getPoints(),
|
||||
);
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
@ -143,5 +143,5 @@ class Cluster extends Point implements IteratorAggregate, Countable
|
||||
public function setCoordinates(array $newCoordinates)
|
||||
{
|
||||
$this->coordinates = $newCoordinates;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -104,7 +104,7 @@ class Space extends SplObjectStorage
|
||||
}
|
||||
}
|
||||
|
||||
return array($min, $max);
|
||||
return [$min, $max];
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -212,7 +212,7 @@ class Matrix
|
||||
*/
|
||||
public function divideByScalar($value)
|
||||
{
|
||||
$newMatrix = array();
|
||||
$newMatrix = [];
|
||||
for ($i = 0; $i < $this->rows; ++$i) {
|
||||
for ($j = 0; $j < $this->columns; ++$j) {
|
||||
$newMatrix[$i][$j] = $this->matrix[$i][$j] / $value;
|
||||
@ -233,7 +233,7 @@ class Matrix
|
||||
throw MatrixException::notSquareMatrix();
|
||||
}
|
||||
|
||||
$newMatrix = array();
|
||||
$newMatrix = [];
|
||||
for ($i = 0; $i < $this->rows; ++$i) {
|
||||
for ($j = 0; $j < $this->columns; ++$j) {
|
||||
$minor = $this->crossOut($i, $j)->getDeterminant();
|
||||
|
@ -176,7 +176,7 @@ class AprioriTest extends \PHPUnit_Framework_TestCase
|
||||
*
|
||||
* @return mixed
|
||||
*/
|
||||
public function invoke(&$object, $method, array $params = array())
|
||||
public function invoke(&$object, $method, array $params = [])
|
||||
{
|
||||
$reflection = new \ReflectionClass(get_class($object));
|
||||
$method = $reflection->getMethod($method);
|
||||
|
@ -1,4 +1,5 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace tests\Clustering;
|
||||
@ -10,7 +11,7 @@ class FuzzyCMeansTest extends \PHPUnit_Framework_TestCase
|
||||
public function testFCMSamplesClustering()
|
||||
{
|
||||
$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];
|
||||
$fcm = new FuzzyCMeans(2);
|
||||
$fcm = new FuzzyCMeans(2);
|
||||
$clusters = $fcm->cluster($samples);
|
||||
$this->assertCount(2, $clusters);
|
||||
foreach ($samples as $index => $sample) {
|
||||
@ -40,4 +41,4 @@ class FuzzyCMeansTest extends \PHPUnit_Framework_TestCase
|
||||
$this->assertEquals(1, array_sum($col));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
<?php
|
||||
<?php declare(strict_types=1);
|
||||
|
||||
namespace tests\Phpml\Math;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user