mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-24 22:07:33 +00:00
Return labels in MultilayerPerceptron output (#315)
This commit is contained in:
parent
e255369636
commit
d29c5906df
@ -41,7 +41,7 @@ class MLPClassifier extends MultilayerPerceptron implements Classifier
|
||||
}
|
||||
}
|
||||
|
||||
return $this->classes[$predictedClass];
|
||||
return $predictedClass;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -49,9 +49,8 @@ class MLPClassifier extends MultilayerPerceptron implements Classifier
|
||||
*/
|
||||
protected function trainSample(array $sample, $target): void
|
||||
{
|
||||
|
||||
// Feed-forward.
|
||||
$this->setInput($sample)->getOutput();
|
||||
$this->setInput($sample);
|
||||
|
||||
// Back-propagate.
|
||||
$this->backpropagation->backpropagate($this->getLayers(), $this->getTargetClass($target));
|
||||
|
@ -41,12 +41,9 @@ class Layer
|
||||
return $this->nodes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Neuron
|
||||
*/
|
||||
private function createNode(string $nodeClass, ?ActivationFunction $activationFunction = null): Node
|
||||
{
|
||||
if ($nodeClass == Neuron::class) {
|
||||
if ($nodeClass === Neuron::class) {
|
||||
return new Neuron($activationFunction);
|
||||
}
|
||||
|
||||
|
@ -51,8 +51,6 @@ abstract class LayeredNetwork implements Network
|
||||
|
||||
/**
|
||||
* @param mixed $input
|
||||
*
|
||||
* @return $this
|
||||
*/
|
||||
public function setInput($input): Network
|
||||
{
|
||||
|
@ -69,6 +69,10 @@ abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator,
|
||||
throw new InvalidArgumentException('Provide at least 2 different classes');
|
||||
}
|
||||
|
||||
if (count($classes) !== count(array_unique($classes))) {
|
||||
throw new InvalidArgumentException('Classes must be unique');
|
||||
}
|
||||
|
||||
$this->classes = array_values($classes);
|
||||
$this->iterations = $iterations;
|
||||
$this->inputLayerFeatures = $inputLayerFeatures;
|
||||
@ -109,6 +113,16 @@ abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator,
|
||||
$this->backpropagation->setLearningRate($this->learningRate);
|
||||
}
|
||||
|
||||
public function getOutput(): array
|
||||
{
|
||||
$result = [];
|
||||
foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) {
|
||||
$result[$this->classes[$i]] = $neuron->getOutput();
|
||||
}
|
||||
|
||||
return $result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param mixed $target
|
||||
*/
|
||||
|
@ -44,7 +44,7 @@ class Neuron implements Node
|
||||
/**
|
||||
* @return Synapse[]
|
||||
*/
|
||||
public function getSynapses()
|
||||
public function getSynapses(): array
|
||||
{
|
||||
return $this->synapses;
|
||||
}
|
||||
|
@ -183,7 +183,7 @@ class MLPClassifierTest extends TestCase
|
||||
$testSamples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
||||
$predicted = $classifier->predict($testSamples);
|
||||
|
||||
$filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid();
|
||||
$filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid('', false);
|
||||
$filepath = tempnam(sys_get_temp_dir(), $filename);
|
||||
$modelManager = new ModelManager();
|
||||
$modelManager->saveToFile($classifier, $filepath);
|
||||
@ -204,7 +204,7 @@ class MLPClassifierTest extends TestCase
|
||||
$this->assertEquals('a', $network->predict([1, 0]));
|
||||
$this->assertEquals('b', $network->predict([0, 1]));
|
||||
|
||||
$filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid();
|
||||
$filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid('', false);
|
||||
$filepath = tempnam(sys_get_temp_dir(), $filename);
|
||||
$modelManager = new ModelManager();
|
||||
$modelManager->saveToFile($network, $filepath);
|
||||
@ -245,6 +245,13 @@ class MLPClassifierTest extends TestCase
|
||||
new MLPClassifier(2, [2], [0]);
|
||||
}
|
||||
|
||||
public function testOutputWithLabels(): void
|
||||
{
|
||||
$output = (new MLPClassifier(2, [2, 2], ['T', 'F']))->getOutput();
|
||||
|
||||
$this->assertEquals(['T', 'F'], array_keys($output));
|
||||
}
|
||||
|
||||
private function getSynapsesNodes(array $synapses): array
|
||||
{
|
||||
$nodes = [];
|
||||
|
@ -4,6 +4,7 @@ declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Tests\NeuralNetwork\Network;
|
||||
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
|
||||
@ -13,6 +14,39 @@ use PHPUnit_Framework_MockObject_MockObject;
|
||||
|
||||
class MultilayerPerceptronTest extends TestCase
|
||||
{
|
||||
public function testThrowExceptionWhenHiddenLayersAreEmpty(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$this->expectExceptionMessage('Provide at least 1 hidden layer');
|
||||
|
||||
$this->getMockForAbstractClass(
|
||||
MultilayerPerceptron::class,
|
||||
[5, [], [0, 1], 1000, null, 0.42]
|
||||
);
|
||||
}
|
||||
|
||||
public function testThrowExceptionWhenThereIsOnlyOneClass(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$this->expectExceptionMessage('Provide at least 2 different classes');
|
||||
|
||||
$this->getMockForAbstractClass(
|
||||
MultilayerPerceptron::class,
|
||||
[5, [3], [0], 1000, null, 0.42]
|
||||
);
|
||||
}
|
||||
|
||||
public function testThrowExceptionWhenClassesAreNotUnique(): void
|
||||
{
|
||||
$this->expectException(InvalidArgumentException::class);
|
||||
$this->expectExceptionMessage('Classes must be unique');
|
||||
|
||||
$this->getMockForAbstractClass(
|
||||
MultilayerPerceptron::class,
|
||||
[5, [3], [0, 1, 2, 3, 1], 1000, null, 0.42]
|
||||
);
|
||||
}
|
||||
|
||||
public function testLearningRateSetter(): void
|
||||
{
|
||||
/** @var MultilayerPerceptron $mlp */
|
||||
|
Loading…
Reference in New Issue
Block a user