mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-21 20:45:10 +00:00
Update NaiveBayes.php (#30)
* Update NaiveBayes.php * Update NaiveBayes.php * Update NaiveBayes.php Update to fix "predictSample" function to enable it handle samples given as multi-dimensional arrays. * Update NaiveBayes.php * Update NaiveBayes.php
This commit is contained in:
parent
cb5a9956c6
commit
e603d60841
@ -6,31 +6,152 @@ namespace Phpml\Classification;
|
||||
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\Helper\Trainable;
|
||||
use Phpml\Math\Statistic\Mean;
|
||||
use Phpml\Math\Statistic\StandardDeviation;
|
||||
|
||||
class NaiveBayes implements Classifier
|
||||
{
|
||||
use Trainable, Predictable;
|
||||
const CONTINUOS = 1;
|
||||
const NOMINAL = 2;
|
||||
const EPSILON = 1e-10;
|
||||
private $std = array();
|
||||
private $mean= array();
|
||||
private $discreteProb = array();
|
||||
private $dataType = array();
|
||||
private $p = array();
|
||||
private $sampleCount = 0;
|
||||
private $featureCount = 0;
|
||||
private $labels = array();
|
||||
public function train(array $samples, array $targets)
|
||||
{
|
||||
$this->samples = $samples;
|
||||
$this->targets = $targets;
|
||||
$this->sampleCount = count($samples);
|
||||
$this->featureCount = count($samples[0]);
|
||||
// Get distinct targets
|
||||
$this->labels = $targets;
|
||||
array_unique($this->labels);
|
||||
foreach ($this->labels as $label) {
|
||||
$samples = $this->getSamplesByLabel($label);
|
||||
$this->p[$label] = count($samples) / $this->sampleCount;
|
||||
$this->calculateStatistics($label, $samples);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates vital statistics for each label & feature. Stores these
|
||||
* values in private array in order to avoid repeated calculation
|
||||
* @param string $label
|
||||
* @param array $samples
|
||||
*/
|
||||
private function calculateStatistics($label, $samples)
|
||||
{
|
||||
$this->std[$label] = array_fill(0, $this->featureCount, 0);
|
||||
$this->mean[$label]= array_fill(0, $this->featureCount, 0);
|
||||
$this->dataType[$label] = array_fill(0, $this->featureCount, self::CONTINUOS);
|
||||
$this->discreteProb[$label] = array_fill(0, $this->featureCount, self::CONTINUOS);
|
||||
for ($i=0; $i<$this->featureCount; $i++) {
|
||||
// Get the values of nth column in the samples array
|
||||
// Mean::arithmetic is called twice, can be optimized
|
||||
$values = array_column($samples, $i);
|
||||
$numValues = count($values);
|
||||
// if the values contain non-numeric data,
|
||||
// then it should be treated as nominal/categorical/discrete column
|
||||
if ($values !== array_filter($values, 'is_numeric')) {
|
||||
$this->dataType[$label][$i] = self::NOMINAL;
|
||||
$this->discreteProb[$label][$i] = array_count_values($values);
|
||||
$db = &$this->discreteProb[$label][$i];
|
||||
$db = array_map(function ($el) use ($numValues) {
|
||||
return $el / $numValues;
|
||||
}, $db);
|
||||
} else {
|
||||
$this->mean[$label][$i] = Mean::arithmetic($values);
|
||||
// Add epsilon in order to avoid zero stdev
|
||||
$this->std[$label][$i] = 1e-10 + StandardDeviation::population($values, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the probability P(label|sample_n)
|
||||
*
|
||||
* @param array $sample
|
||||
* @param int $feature
|
||||
* @param string $label
|
||||
*/
|
||||
private function sampleProbability($sample, $feature, $label)
|
||||
{
|
||||
$value = $sample[$feature];
|
||||
if ($this->dataType[$label][$feature] == self::NOMINAL) {
|
||||
if (! isset($this->discreteProb[$label][$feature][$value]) ||
|
||||
$this->discreteProb[$label][$feature][$value] == 0) {
|
||||
return self::EPSILON;
|
||||
}
|
||||
return $this->discreteProb[$label][$feature][$value];
|
||||
}
|
||||
$std = $this->std[$label][$feature] ;
|
||||
$mean= $this->mean[$label][$feature];
|
||||
// Calculate the probability density by use of normal/Gaussian distribution
|
||||
// Ref: https://en.wikipedia.org/wiki/Normal_distribution
|
||||
//
|
||||
// In order to avoid numerical errors because of small or zero values,
|
||||
// some libraries adopt taking log of calculations such as
|
||||
// scikit-learn did.
|
||||
// (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py)
|
||||
$pdf = -0.5 * log(2.0 * pi() * $std * $std);
|
||||
$pdf -= 0.5 * pow($value - $mean, 2) / ($std * $std);
|
||||
return $pdf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return samples belonging to specific label
|
||||
* @param string $label
|
||||
* @return array
|
||||
*/
|
||||
private function getSamplesByLabel($label)
|
||||
{
|
||||
$samples = array();
|
||||
for ($i=0; $i<$this->sampleCount; $i++) {
|
||||
if ($this->targets[$i] == $label) {
|
||||
$samples[] = $this->samples[$i];
|
||||
}
|
||||
}
|
||||
return $samples;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param array $sample
|
||||
*
|
||||
* @return mixed
|
||||
*/
|
||||
protected function predictSample(array $sample)
|
||||
{
|
||||
$predictions = [];
|
||||
foreach ($this->targets as $index => $label) {
|
||||
$predictions[$label] = 0;
|
||||
foreach ($sample as $token => $count) {
|
||||
if (array_key_exists($token, $this->samples[$index])) {
|
||||
$predictions[$label] += $count * $this->samples[$index][$token];
|
||||
}
|
||||
}
|
||||
$isArray = is_array($sample[0]);
|
||||
$samples = $sample;
|
||||
if (!$isArray) {
|
||||
$samples = array($sample);
|
||||
}
|
||||
|
||||
arsort($predictions, SORT_NUMERIC);
|
||||
reset($predictions);
|
||||
|
||||
return key($predictions);
|
||||
$samplePredictions = array();
|
||||
foreach ($samples as $sample) {
|
||||
// Use NaiveBayes assumption for each label using:
|
||||
// P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label)
|
||||
// Then compare probability for each class to determine which label is most likely
|
||||
$predictions = array();
|
||||
foreach ($this->labels as $label) {
|
||||
$p = $this->p[$label];
|
||||
for ($i=0; $i<$this->featureCount; $i++) {
|
||||
$Plf = $this->sampleProbability($sample, $i, $label);
|
||||
$p += $Plf;
|
||||
}
|
||||
$predictions[$label] = $p;
|
||||
}
|
||||
arsort($predictions, SORT_NUMERIC);
|
||||
reset($predictions);
|
||||
$samplePredictions[] = key($predictions);
|
||||
}
|
||||
if (! $isArray) {
|
||||
return $samplePredictions[0];
|
||||
}
|
||||
return $samplePredictions;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user