assertCount(3, $mlp->getLayers()); $layers = $mlp->getLayers(); // input layer $this->assertCount(3, $layers[0]->getNodes()); $this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes()); // hidden layer $this->assertCount(3, $layers[1]->getNodes()); $this->assertNotContainsOnly(Neuron::class, $layers[1]->getNodes()); // output layer $this->assertCount(2, $layers[2]->getNodes()); $this->assertContainsOnly(Neuron::class, $layers[2]->getNodes()); } public function testSynapsesGeneration(): void { $mlp = new MLPClassifier(2, [2], [0, 1]); $layers = $mlp->getLayers(); foreach ($layers[1]->getNodes() as $node) { if ($node instanceof Neuron) { $synapses = $node->getSynapses(); $this->assertCount(3, $synapses); $synapsesNodes = $this->getSynapsesNodes($synapses); foreach ($layers[0]->getNodes() as $prevNode) { $this->assertContains($prevNode, $synapsesNodes); } } } } public function testBackpropagationLearning(): void { // Single layer 2 classes. $network = new MLPClassifier(2, [2], ['a', 'b'], 1000); $network->train( [[1, 0], [0, 1], [1, 1], [0, 0]], ['a', 'b', 'a', 'b'] ); $this->assertEquals('a', $network->predict([1, 0])); $this->assertEquals('b', $network->predict([0, 1])); $this->assertEquals('a', $network->predict([1, 1])); $this->assertEquals('b', $network->predict([0, 0])); } public function testBackpropagationTrainingReset(): void { // Single layer 2 classes. $network = new MLPClassifier(2, [2], ['a', 'b'], 1000); $network->train( [[1, 0], [0, 1]], ['a', 'b'] ); $this->assertEquals('a', $network->predict([1, 0])); $this->assertEquals('b', $network->predict([0, 1])); $network->train( [[1, 0], [0, 1]], ['b', 'a'] ); $this->assertEquals('b', $network->predict([1, 0])); $this->assertEquals('a', $network->predict([0, 1])); } public function testBackpropagationPartialTraining(): void { // Single layer 2 classes. $network = new MLPClassifier(2, [2], ['a', 'b'], 1000); $network->partialTrain( [[1, 0], [0, 1]], ['a', 'b'] ); $this->assertEquals('a', $network->predict([1, 0])); $this->assertEquals('b', $network->predict([0, 1])); $network->partialTrain( [[1, 1], [0, 0]], ['a', 'b'] ); $this->assertEquals('a', $network->predict([1, 0])); $this->assertEquals('b', $network->predict([0, 1])); $this->assertEquals('a', $network->predict([1, 1])); $this->assertEquals('b', $network->predict([0, 0])); } public function testBackpropagationLearningMultilayer(): void { // Multi-layer 2 classes. $network = new MLPClassifier(5, [3, 2], ['a', 'b', 'c'], 2000); $network->train( [[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0]], ['a', 'b', 'a', 'c'] ); $this->assertEquals('a', $network->predict([1, 0, 0, 0, 0])); $this->assertEquals('b', $network->predict([0, 1, 1, 0, 0])); $this->assertEquals('a', $network->predict([1, 1, 1, 1, 1])); $this->assertEquals('c', $network->predict([0, 0, 0, 0, 0])); } public function testBackpropagationLearningMulticlass(): void { // Multi-layer more than 2 classes. $network = new MLPClassifier(5, [3, 2], ['a', 'b', 4], 1000); $network->train( [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0]], ['a', 'b', 'a', 'a', 4] ); $this->assertEquals('a', $network->predict([1, 0, 0, 0, 0])); $this->assertEquals('b', $network->predict([0, 1, 0, 0, 0])); $this->assertEquals('a', $network->predict([0, 0, 1, 1, 0])); $this->assertEquals('a', $network->predict([1, 1, 1, 1, 1])); $this->assertEquals(4, $network->predict([0, 0, 0, 0, 0])); } /** * @dataProvider activationFunctionsProvider */ public function testBackpropagationActivationFunctions(ActivationFunction $activationFunction): void { $network = new MLPClassifier(5, [3], ['a', 'b'], 1000, $activationFunction); $network->train( [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [1, 1, 1, 1, 1]], ['a', 'b', 'a', 'a'] ); $this->assertEquals('a', $network->predict([1, 0, 0, 0, 0])); $this->assertEquals('b', $network->predict([0, 1, 0, 0, 0])); $this->assertEquals('a', $network->predict([0, 0, 1, 1, 0])); $this->assertEquals('a', $network->predict([1, 1, 1, 1, 1])); } public function activationFunctionsProvider(): array { return [ [new Sigmoid()], [new HyperbolicTangent()], [new PReLU()], [new ThresholdedReLU()], ]; } public function testSaveAndRestore(): void { // Instantinate new Percetron trained for OR problem $samples = [[0, 0], [1, 0], [0, 1], [1, 1]]; $targets = [0, 1, 1, 1]; $classifier = new MLPClassifier(2, [2], [0, 1], 1000); $classifier->train($samples, $targets); $testSamples = [[0, 0], [1, 0], [0, 1], [1, 1]]; $predicted = $classifier->predict($testSamples); $filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid(); $filepath = tempnam(sys_get_temp_dir(), $filename); $modelManager = new ModelManager(); $modelManager->saveToFile($classifier, $filepath); $restoredClassifier = $modelManager->restoreFromFile($filepath); $this->assertEquals($classifier, $restoredClassifier); $this->assertEquals($predicted, $restoredClassifier->predict($testSamples)); } public function testThrowExceptionOnInvalidLayersNumber(): void { $this->expectException(InvalidArgumentException::class); new MLPClassifier(2, [], [0, 1]); } public function testThrowExceptionOnInvalidPartialTrainingClasses(): void { $this->expectException(InvalidArgumentException::class); $classifier = new MLPClassifier(2, [2], [0, 1]); $classifier->partialTrain( [[0, 1], [1, 0]], [0, 2], [0, 1, 2] ); } public function testThrowExceptionOnInvalidClassesNumber(): void { $this->expectException(InvalidArgumentException::class); new MLPClassifier(2, [2], [0]); } private function getSynapsesNodes(array $synapses): array { $nodes = []; foreach ($synapses as $synapse) { $nodes[] = $synapse->getNode(); } return $nodes; } }