samples = $samples; $this->targets = $targets; $this->gradientCb = $gradientCb; $this->sampleCount = count($samples); $this->costValues = []; $d = MP::muls($this->gradient($this->theta), -1); for ($i = 0; $i < $this->maxIterations; ++$i) { // Obtain α that minimizes f(θ + α.d) $alpha = $this->getAlpha($d); // θ(k+1) = θ(k) + α.d $thetaNew = $this->getNewTheta($alpha, $d); // β = ||∇f(x(k+1))||² ∕ ||∇f(x(k))||² $beta = $this->getBeta($thetaNew); // d(k+1) =–∇f(x(k+1)) + β(k).d(k) $d = $this->getNewDirection($thetaNew, $beta, $d); // Save values for the next iteration $oldTheta = $this->theta; $this->costValues[] = $this->cost($thetaNew); $this->theta = $thetaNew; if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) { break; } } $this->clear(); return $this->theta; } /** * Executes the callback function for the problem and returns * sum of the gradient for all samples & targets. */ protected function gradient(array $theta): array { [, $updates, $penalty] = parent::gradient($theta); // Calculate gradient for each dimension $gradient = []; for ($i = 0; $i <= $this->dimensions; ++$i) { if ($i === 0) { $gradient[$i] = array_sum($updates); } else { $col = array_column($this->samples, $i - 1); $error = 0; foreach ($col as $index => $val) { $error += $val * $updates[$index]; } $gradient[$i] = $error + $penalty * $theta[$i]; } } return $gradient; } /** * Returns the value of f(x) for given solution */ protected function cost(array $theta): float { [$cost] = parent::gradient($theta); return array_sum($cost) / (int) $this->sampleCount; } /** * Calculates alpha that minimizes the function f(θ + α.d) * by performing a line search that does not rely upon the derivation. * * There are several alternatives for this function. For now, we * prefer a method inspired from the bisection method for its simplicity. * This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01 * * Algorithm as follows: * a) Probe a small alpha (0.0001) and calculate cost function * b) Probe a larger alpha (0.01) and calculate cost function * b-1) If cost function decreases, continue enlarging alpha * b-2) If cost function increases, take the midpoint and try again */ protected function getAlpha(array $d): float { $small = MP::muls($d, 0.0001); $large = MP::muls($d, 0.01); // Obtain θ + α.d for two initial values, x0 and x1 $x0 = MP::add($this->theta, $small); $x1 = MP::add($this->theta, $large); $epsilon = 0.0001; $iteration = 0; do { $fx1 = $this->cost($x1); $fx0 = $this->cost($x0); // If the difference between two values is small enough // then break the loop if (abs($fx1 - $fx0) <= $epsilon) { break; } if ($fx1 < $fx0) { $x0 = $x1; $x1 = MP::adds($x1, 0.01); // Enlarge second } else { $x1 = MP::divs(MP::add($x1, $x0), 2.0); } // Get to the midpoint $error = $fx1 / $this->dimensions; } while ($error <= $epsilon || $iteration++ < 10); // Return α = θ / d // For accuracy, choose a dimension which maximize |d[i]| $imax = 0; for ($i = 1; $i <= $this->dimensions; ++$i) { if (abs($d[$i]) > abs($d[$imax])) { $imax = $i; } } if ($d[$imax] == 0) { return $x1[$imax] - $this->theta[$imax]; } return ($x1[$imax] - $this->theta[$imax]) / $d[$imax]; } /** * Calculates new set of solutions with given alpha (for each θ(k)) and * gradient direction. * * θ(k+1) = θ(k) + α.d */ protected function getNewTheta(float $alpha, array $d): array { return MP::add($this->theta, MP::muls($d, $alpha)); } /** * Calculates new beta (β) for given set of solutions by using * Fletcher–Reeves method. * * β = ||f(x(k+1))||² ∕ ||f(x(k))||² * * See: * R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149–154. */ protected function getBeta(array $newTheta): float { $gNew = $this->gradient($newTheta); $gOld = $this->gradient($this->theta); $dNew = 0; $dOld = 1e-100; for ($i = 0; $i <= $this->dimensions; ++$i) { $dNew += $gNew[$i] ** 2; $dOld += $gOld[$i] ** 2; } return $dNew / $dOld; } /** * Calculates the new conjugate direction * * d(k+1) =–∇f(x(k+1)) + β(k).d(k) */ protected function getNewDirection(array $theta, float $beta, array $d): array { $grad = $this->gradient($theta); return MP::add(MP::muls($grad, -1), MP::muls($d, $beta)); } } /** * Handles element-wise vector operations between vector-vector * and vector-scalar variables */ class MP { /** * Element-wise multiplication of two vectors of the same size */ public static function mul(array $m1, array $m2): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val * $m2[$i]; } return $res; } /** * Element-wise division of two vectors of the same size */ public static function div(array $m1, array $m2): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val / $m2[$i]; } return $res; } /** * Element-wise addition of two vectors of the same size */ public static function add(array $m1, array $m2, int $mag = 1): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val + $mag * $m2[$i]; } return $res; } /** * Element-wise subtraction of two vectors of the same size */ public static function sub(array $m1, array $m2): array { return self::add($m1, $m2, -1); } /** * Element-wise multiplication of a vector with a scalar */ public static function muls(array $m1, float $m2): array { $res = []; foreach ($m1 as $val) { $res[] = $val * $m2; } return $res; } /** * Element-wise division of a vector with a scalar */ public static function divs(array $m1, float $m2): array { $res = []; foreach ($m1 as $val) { $res[] = $val / ($m2 + 1e-32); } return $res; } /** * Element-wise addition of a vector with a scalar */ public static function adds(array $m1, float $m2, int $mag = 1): array { $res = []; foreach ($m1 as $val) { $res[] = $val + $mag * $m2; } return $res; } /** * Element-wise subtraction of a vector with a scalar */ public static function subs(array $m1, float $m2): array { return self::adds($m1, $m2, -1); } }