samples = $samples; $this->targets = $targets; $this->gradientCb = $gradientCb; $this->sampleCount = count($this->samples); // Batch learning is executed: $currIter = 0; $this->costValues = []; while ($this->maxIterations > $currIter++) { $theta = $this->theta; // Calculate update terms for each sample list($errors, $updates, $totalPenalty) = $this->gradient($theta); $this->updateWeightsWithUpdates($updates, $totalPenalty); $this->costValues[] = array_sum($errors) / $this->sampleCount; if ($this->earlyStop($theta)) { break; } } $this->clear(); return $this->theta; } /** * Calculates gradient, cost function and penalty term for each sample * then returns them as an array of values * * @param array $theta * * @return array */ protected function gradient(array $theta) { $costs = []; $gradient = []; $totalPenalty = 0; foreach ($this->samples as $index => $sample) { $target = $this->targets[$index]; $result = ($this->gradientCb)($theta, $sample, $target); list($cost, $grad, $penalty) = array_pad($result, 3, 0); $costs[] = $cost; $gradient[] = $grad; $totalPenalty += $penalty; } $totalPenalty /= $this->sampleCount; return [$costs, $gradient, $totalPenalty]; } /** * @param array $updates * @param float $penalty */ protected function updateWeightsWithUpdates(array $updates, float $penalty) { // Updates all weights at once for ($i = 0; $i <= $this->dimensions; ++$i) { if ($i === 0) { $this->theta[0] -= $this->learningRate * array_sum($updates); } else { $col = array_column($this->samples, $i - 1); $error = 0; foreach ($col as $index => $val) { $error += $val * $updates[$index]; } $this->theta[$i] -= $this->learningRate * ($error + $penalty * $this->theta[$i]); } } } /** * Clears the optimizer internal vars after the optimization process. * * @return void */ protected function clear() { $this->sampleCount = null; parent::clear(); } }