expectException(InvalidArgumentException::class); $this->expectExceptionMessage('RandomForest can only use DecisionTree as base classifier'); $classifier = new RandomForest(); $classifier->setClassifer(NaiveBayes::class); } public function testThrowExceptionWithInvalidFeatureSubsetRatioType(): void { $this->expectException(InvalidArgumentException::class); $this->expectExceptionMessage('Feature subset ratio must be a string or a float'); $classifier = new RandomForest(); $classifier->setFeatureSubsetRatio(1); } public function testThrowExceptionWithInvalidFeatureSubsetRatioFloat(): void { $this->expectException(InvalidArgumentException::class); $this->expectExceptionMessage('When a float is given, feature subset ratio should be between 0.1 and 1.0'); $classifier = new RandomForest(); $classifier->setFeatureSubsetRatio(1.1); } public function testThrowExceptionWithInvalidFeatureSubsetRatioString(): void { $this->expectException(InvalidArgumentException::class); $this->expectExceptionMessage("When a string is given, feature subset ratio can only be 'sqrt' or 'log'"); $classifier = new RandomForest(); $classifier->setFeatureSubsetRatio('pow'); } /** * @return RandomForest */ protected function getClassifier(int $numBaseClassifiers = 50): Classifier { $classifier = new RandomForest($numBaseClassifiers); $classifier->setFeatureSubsetRatio('log'); return $classifier; } protected function getAvailableBaseClassifiers(): array { return [DecisionTree::class => ['depth' => 5]]; } }