# Support Vector Regression Class implementing Epsilon-Support Vector Regression based on libsvm. ### Constructor Parameters * $kernel (int) - kernel type to be used in the algorithm (default Kernel::LINEAR) * $degree (int) - degree of the Kernel::POLYNOMIAL function (default 3) * $epsilon (float) - epsilon in loss function of epsilon-SVR (default 0.1) * $cost (float) - parameter C of C-SVC (default 1.0) * $gamma (float) - kernel coefficient for ‘Kernel::RBF’, ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’. If gamma is ‘null’ then 1/features will be used instead. * $coef0 (float) - independent term in kernel function. It is only significant in ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’ (default 0.0) * $tolerance (float) - tolerance of termination criterion (default 0.001) * $cacheSize (int) - cache memory size in MB (default 100) * $shrinking (bool) - whether to use the shrinking heuristics (default true) ``` $regression = new SVR(Kernel::LINEAR); $regression = new SVR(Kernel::LINEAR, $degree = 3, $epsilon=10.0); ``` ### Train To train a model simply provide train samples and targets values (as `array`). Example: ``` use Phpml\Regression\SVR; use Phpml\SupportVectorMachine\Kernel; $samples = [[60], [61], [62], [63], [65]]; $targets = [3.1, 3.6, 3.8, 4, 4.1]; $regression = new SVR(Kernel::LINEAR); $regression->train($samples, $targets); ``` ### Predict To predict sample target value use `predict` method. You can provide one sample or array of samples: ``` $regression->predict([64]) // return 4.03 ```