samples = $samples; $this->targets = $targets; $this->gradientCb = $gradientCb; $this->sampleCount = count($samples); $this->costValues = []; $d = MP::muls($this->gradient($this->theta), -1); for ($i = 0; $i < $this->maxIterations; ++$i) { // Obtain α that minimizes f(θ + α.d) $alpha = $this->getAlpha(array_sum($d)); // θ(k+1) = θ(k) + α.d $thetaNew = $this->getNewTheta($alpha, $d); // β = ||∇f(x(k+1))||² ∕ ||∇f(x(k))||² $beta = $this->getBeta($thetaNew); // d(k+1) =–∇f(x(k+1)) + β(k).d(k) $d = $this->getNewDirection($thetaNew, $beta, $d); // Save values for the next iteration $oldTheta = $this->theta; $this->costValues[] = $this->cost($thetaNew); $this->theta = $thetaNew; if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) { break; } } $this->clear(); return $this->theta; } /** * Executes the callback function for the problem and returns * sum of the gradient for all samples & targets. */ protected function gradient(array $theta): array { [, $gradient] = parent::gradient($theta); return $gradient; } /** * Returns the value of f(x) for given solution */ protected function cost(array $theta): float { [$cost] = parent::gradient($theta); return array_sum($cost) / $this->sampleCount; } /** * Calculates alpha that minimizes the function f(θ + α.d) * by performing a line search that does not rely upon the derivation. * * There are several alternatives for this function. For now, we * prefer a method inspired from the bisection method for its simplicity. * This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01 * * Algorithm as follows: * a) Probe a small alpha (0.0001) and calculate cost function * b) Probe a larger alpha (0.01) and calculate cost function * b-1) If cost function decreases, continue enlarging alpha * b-2) If cost function increases, take the midpoint and try again */ protected function getAlpha(float $d): float { $small = 0.0001 * $d; $large = 0.01 * $d; // Obtain θ + α.d for two initial values, x0 and x1 $x0 = MP::adds($this->theta, $small); $x1 = MP::adds($this->theta, $large); $epsilon = 0.0001; $iteration = 0; do { $fx1 = $this->cost($x1); $fx0 = $this->cost($x0); // If the difference between two values is small enough // then break the loop if (abs($fx1 - $fx0) <= $epsilon) { break; } if ($fx1 < $fx0) { $x0 = $x1; $x1 = MP::adds($x1, 0.01); // Enlarge second } else { $x1 = MP::divs(MP::add($x1, $x0), 2.0); } // Get to the midpoint $error = $fx1 / $this->dimensions; } while ($error <= $epsilon || $iteration++ < 10); // Return α = θ / d if ($d == 0) { return $x1[0] - $this->theta[0]; } return ($x1[0] - $this->theta[0]) / $d; } /** * Calculates new set of solutions with given alpha (for each θ(k)) and * gradient direction. * * θ(k+1) = θ(k) + α.d */ protected function getNewTheta(float $alpha, array $d): array { $theta = $this->theta; for ($i = 0; $i < $this->dimensions + 1; ++$i) { if ($i === 0) { $theta[$i] += $alpha * array_sum($d); } else { $sum = 0.0; foreach ($this->samples as $si => $sample) { $sum += $sample[$i - 1] * $d[$si] * $alpha; } $theta[$i] += $sum; } } return $theta; } /** * Calculates new beta (β) for given set of solutions by using * Fletcher–Reeves method. * * β = ||f(x(k+1))||² ∕ ||f(x(k))||² * * See: * R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149–154. */ protected function getBeta(array $newTheta): float { $dNew = array_sum($this->gradient($newTheta)); $dOld = array_sum($this->gradient($this->theta)) + 1e-100; return $dNew ** 2 / $dOld ** 2; } /** * Calculates the new conjugate direction * * d(k+1) =–∇f(x(k+1)) + β(k).d(k) */ protected function getNewDirection(array $theta, float $beta, array $d): array { $grad = $this->gradient($theta); return MP::add(MP::muls($grad, -1), MP::muls($d, $beta)); } } /** * Handles element-wise vector operations between vector-vector * and vector-scalar variables */ class MP { /** * Element-wise multiplication of two vectors of the same size */ public static function mul(array $m1, array $m2): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val * $m2[$i]; } return $res; } /** * Element-wise division of two vectors of the same size */ public static function div(array $m1, array $m2): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val / $m2[$i]; } return $res; } /** * Element-wise addition of two vectors of the same size */ public static function add(array $m1, array $m2, int $mag = 1): array { $res = []; foreach ($m1 as $i => $val) { $res[] = $val + $mag * $m2[$i]; } return $res; } /** * Element-wise subtraction of two vectors of the same size */ public static function sub(array $m1, array $m2): array { return self::add($m1, $m2, -1); } /** * Element-wise multiplication of a vector with a scalar */ public static function muls(array $m1, float $m2): array { $res = []; foreach ($m1 as $val) { $res[] = $val * $m2; } return $res; } /** * Element-wise division of a vector with a scalar */ public static function divs(array $m1, float $m2): array { $res = []; foreach ($m1 as $val) { $res[] = $val / ($m2 + 1e-32); } return $res; } /** * Element-wise addition of a vector with a scalar */ public static function adds(array $m1, float $m2, int $mag = 1): array { $res = []; foreach ($m1 as $val) { $res[] = $val + $mag * $m2; } return $res; } /** * Element-wise subtraction of a vector with a scalar */ public static function subs(array $m1, float $m2): array { return self::adds($m1, $m2, -1); } }