transform($samples); $this->assertEquals($normalized, $samples, '', $delta = 0.01); } public function testNormalizeSamplesWithL1Norm(): void { $samples = [ [1, -1, 2], [2, 0, 0], [0, 1, -1], ]; $normalized = [ [0.25, -0.25, 0.5], [1.0, 0.0, 0.0], [0.0, 0.5, -0.5], ]; $normalizer = new Normalizer(Normalizer::NORM_L1); $normalizer->transform($samples); $this->assertEquals($normalized, $samples, '', $delta = 0.01); } public function testFitNotChangeNormalizerBehavior(): void { $samples = [ [1, -1, 2], [2, 0, 0], [0, 1, -1], ]; $normalized = [ [0.4, -0.4, 0.81], [1.0, 0.0, 0.0], [0.0, 0.7, -0.7], ]; $normalizer = new Normalizer(); $normalizer->transform($samples); $this->assertEquals($normalized, $samples, '', $delta = 0.01); $normalizer->fit($samples); $this->assertEquals($normalized, $samples, '', $delta = 0.01); } public function testL1NormWithZeroSumCondition(): void { $samples = [ [0, 0, 0], [2, 0, 0], [0, 1, -1], ]; $normalized = [ [0.33, 0.33, 0.33], [1.0, 0.0, 0.0], [0.0, 0.5, -0.5], ]; $normalizer = new Normalizer(Normalizer::NORM_L1); $normalizer->transform($samples); $this->assertEquals($normalized, $samples, '', $delta = 0.01); } public function testStandardNorm(): void { // Generate 10 random vectors of length 3 $samples = []; srand(time()); for ($i = 0; $i < 10; ++$i) { $sample = array_fill(0, 3, 0); for ($k = 0; $k < 3; ++$k) { $sample[$k] = random_int(1, 100); } // Last feature's value shared across samples. $sample[] = 1; $samples[] = $sample; } // Use standard normalization $normalizer = new Normalizer(Normalizer::NORM_STD); $normalizer->transform($samples); // Values in the vector should be some value between -3 and +3 $this->assertCount(10, $samples); foreach ($samples as $sample) { $errors = array_filter( $sample, function ($element) { return $element < -3 || $element > 3; } ); $this->assertCount(0, $errors); $this->assertEquals(0, $sample[3]); } } }