setSubsetRatio(1.0); } /** * This method is used to determine how many of the original columns (features) * will be used to construct subsets to train base classifiers.
* * Allowed values: 'sqrt', 'log' or any float number between 0.1 and 1.0
* * Default value for the ratio is 'log' which results in log(numFeatures, 2) + 1 * features to be taken into consideration while selecting subspace of features * * @param string|float $ratio */ public function setFeatureSubsetRatio($ratio): self { if (!is_string($ratio) && !is_float($ratio)) { throw new InvalidArgumentException('Feature subset ratio must be a string or a float'); } if (is_float($ratio) && ($ratio < 0.1 || $ratio > 1.0)) { throw new InvalidArgumentException('When a float is given, feature subset ratio should be between 0.1 and 1.0'); } if (is_string($ratio) && $ratio != 'sqrt' && $ratio != 'log') { throw new InvalidArgumentException("When a string is given, feature subset ratio can only be 'sqrt' or 'log'"); } $this->featureSubsetRatio = $ratio; return $this; } /** * RandomForest algorithm is usable *only* with DecisionTree * * @return $this */ public function setClassifer(string $classifier, array $classifierOptions = []) { if ($classifier != DecisionTree::class) { throw new InvalidArgumentException('RandomForest can only use DecisionTree as base classifier'); } return parent::setClassifer($classifier, $classifierOptions); } /** * This will return an array including an importance value for * each column in the given dataset. Importance values for a column * is the average importance of that column in all trees in the forest */ public function getFeatureImportances(): array { // Traverse each tree and sum importance of the columns $sum = []; foreach ($this->classifiers as $tree) { /* @var $tree DecisionTree */ $importances = $tree->getFeatureImportances(); foreach ($importances as $column => $importance) { if (array_key_exists($column, $sum)) { $sum[$column] += $importance; } else { $sum[$column] = $importance; } } } // Normalize & sort the importance values $total = array_sum($sum); foreach ($sum as &$importance) { $importance /= $total; } arsort($sum); return $sum; } /** * A string array to represent the columns is given. They are useful * when trying to print some information about the trees such as feature importances * * @return $this */ public function setColumnNames(array $names) { $this->columnNames = $names; return $this; } /** * @param DecisionTree $classifier * * @return DecisionTree */ protected function initSingleClassifier(Classifier $classifier): Classifier { if (is_float($this->featureSubsetRatio)) { $featureCount = (int) ($this->featureSubsetRatio * $this->featureCount); } elseif ($this->featureSubsetRatio == 'sqrt') { $featureCount = (int) sqrt($this->featureCount) + 1; } else { $featureCount = (int) log($this->featureCount, 2) + 1; } if ($featureCount >= $this->featureCount) { $featureCount = $this->featureCount; } if ($this->columnNames === null) { $this->columnNames = range(0, $this->featureCount - 1); } return $classifier ->setColumnNames($this->columnNames) ->setNumFeatures($featureCount); } }