getClassifier(); $this->expectException(InvalidArgumentException::class); $classifier->setSubsetRatio(0); } public function testPredictSingleSample(): void { [$data, $targets] = $this->getData($this->data); $classifier = $this->getClassifier(); // Testing with default options $classifier->train($data, $targets); $this->assertEquals('Dont_play', $classifier->predict(['sunny', 78, 72, 'false'])); $this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false'])); $this->assertEquals('Dont_play', $classifier->predict(['rain', 60, 60, 'true'])); [$data, $targets] = $this->getData($this->extraData); $classifier->train($data, $targets); $this->assertEquals('Dont_play', $classifier->predict(['scorching', 95, 90, 'true'])); $this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false'])); } public function testSaveAndRestore(): void { [$data, $targets] = $this->getData($this->data); $classifier = $this->getClassifier(5); $classifier->train($data, $targets); $testSamples = [['sunny', 78, 72, 'false'], ['overcast', 60, 60, 'false']]; $predicted = $classifier->predict($testSamples); $filename = 'bagging-test-'.random_int(100, 999).'-'.uniqid(); $filepath = tempnam(sys_get_temp_dir(), $filename); $modelManager = new ModelManager(); $modelManager->saveToFile($classifier, $filepath); $restoredClassifier = $modelManager->restoreFromFile($filepath); $this->assertEquals($classifier, $restoredClassifier); $this->assertEquals($predicted, $restoredClassifier->predict($testSamples)); } public function testBaseClassifiers(): void { [$data, $targets] = $this->getData($this->data); $baseClassifiers = $this->getAvailableBaseClassifiers(); foreach ($baseClassifiers as $base => $params) { $classifier = $this->getClassifier(); $classifier->setClassifer($base, $params); $classifier->train($data, $targets); $baseClassifier = new $base(...array_values($params)); $baseClassifier->train($data, $targets); $testData = [['sunny', 78, 72, 'false'], ['overcast', 60, 60, 'false'], ['rain', 60, 60, 'true']]; foreach ($testData as $test) { $result = $classifier->predict($test); $baseResult = $classifier->predict($test); $this->assertEquals($result, $baseResult); } } } protected function getClassifier($numBaseClassifiers = 50) { $classifier = new Bagging($numBaseClassifiers); $classifier->setSubsetRatio(1.0); $classifier->setClassifer(DecisionTree::class, ['depth' => 10]); return $classifier; } protected function getAvailableBaseClassifiers() { return [ DecisionTree::class => ['depth' => 5], NaiveBayes::class => [], ]; } private function getData($input) { // Populating input data to a size large enough // for base classifiers that they can work with a subset of it $populated = []; for ($i = 0; $i < 20; ++$i) { $populated = array_merge($populated, $input); } shuffle($populated); $targets = array_column($populated, 4); array_walk($populated, function (&$v): void { array_splice($v, 4, 1); }); return [$populated, $targets]; } }