# KNearestNeighbors Classifier Classifier implementing the k-nearest neighbors algorithm. ### Constructor Parameters * $k - number of nearest neighbors to scan (default: 3) * $distanceMetric - Distance class, default Euclidean (see Distance Metric documentation) ``` $classifier = new KNearestNeighbors($k=4); $classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4)); ``` ### Train To train a classifier simply provide train samples and labels (as `array`): ``` $samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]]; $labels = ['a', 'a', 'a', 'b', 'b', 'b']; $classifier = new KNearestNeighbors(); $classifier->train($samples, $labels); ``` ### Predict To predict sample class use `predict` method. You can provide one sample or array of samples: ``` $classifier->predict([3, 2]); // return 'b' $classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a'] ```