0.5, 'ant' => 0.0, 'bird' => 1.0, ]; $recall = [ 'cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67, ]; $f1score = [ 'cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80, ]; $support = [ 'cat' => 1, 'ant' => 1, 'bird' => 3, ]; // ClassificationReport uses macro-averaging as default $average = [ 'precision' => 0.5, // (1/2 + 0 + 1) / 3 = 1/2 'recall' => 0.56, // (1 + 0 + 2/3) / 3 = 5/9 'f1score' => 0.49, // (2/3 + 0 + 4/5) / 3 = 22/45 ]; self::assertEquals($precision, $report->getPrecision(), '', 0.01); self::assertEquals($recall, $report->getRecall(), '', 0.01); self::assertEquals($f1score, $report->getF1score(), '', 0.01); self::assertEquals($support, $report->getSupport(), '', 0.01); self::assertEquals($average, $report->getAverage(), '', 0.01); } public function testClassificationReportGenerateWithNumericLabels(): void { $labels = [0, 1, 2, 2, 2]; $predicted = [0, 0, 2, 2, 1]; $report = new ClassificationReport($labels, $predicted); $precision = [ 0 => 0.5, 1 => 0.0, 2 => 1.0, ]; $recall = [ 0 => 1.0, 1 => 0.0, 2 => 0.67, ]; $f1score = [ 0 => 0.67, 1 => 0.0, 2 => 0.80, ]; $support = [ 0 => 1, 1 => 1, 2 => 3, ]; $average = [ 'precision' => 0.5, 'recall' => 0.56, 'f1score' => 0.49, ]; self::assertEquals($precision, $report->getPrecision(), '', 0.01); self::assertEquals($recall, $report->getRecall(), '', 0.01); self::assertEquals($f1score, $report->getF1score(), '', 0.01); self::assertEquals($support, $report->getSupport(), '', 0.01); self::assertEquals($average, $report->getAverage(), '', 0.01); } public function testClassificationReportAverageOutOfRange(): void { $labels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predicted = ['cat', 'cat', 'bird', 'bird', 'ant']; $this->expectException(InvalidArgumentException::class); new ClassificationReport($labels, $predicted, 0); } public function testClassificationReportMicroAverage(): void { $labels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predicted = ['cat', 'cat', 'bird', 'bird', 'ant']; $report = new ClassificationReport($labels, $predicted, ClassificationReport::MICRO_AVERAGE); $average = [ 'precision' => 0.6, // TP / (TP + FP) = (1 + 0 + 2) / (2 + 1 + 2) = 3/5 'recall' => 0.6, // TP / (TP + FN) = (1 + 0 + 2) / (1 + 1 + 3) = 3/5 'f1score' => 0.6, // Harmonic mean of precision and recall ]; self::assertEquals($average, $report->getAverage(), '', 0.01); } public function testClassificationReportMacroAverage(): void { $labels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predicted = ['cat', 'cat', 'bird', 'bird', 'ant']; $report = new ClassificationReport($labels, $predicted, ClassificationReport::MACRO_AVERAGE); $average = [ 'precision' => 0.5, // (1/2 + 0 + 1) / 3 = 1/2 'recall' => 0.56, // (1 + 0 + 2/3) / 3 = 5/9 'f1score' => 0.49, // (2/3 + 0 + 4/5) / 3 = 22/45 ]; self::assertEquals($average, $report->getAverage(), '', 0.01); } public function testClassificationReportWeightedAverage(): void { $labels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predicted = ['cat', 'cat', 'bird', 'bird', 'ant']; $report = new ClassificationReport($labels, $predicted, ClassificationReport::WEIGHTED_AVERAGE); $average = [ 'precision' => 0.7, // (1/2 * 1 + 0 * 1 + 1 * 3) / 5 = 7/10 'recall' => 0.6, // (1 * 1 + 0 * 1 + 2/3 * 3) / 5 = 3/5 'f1score' => 0.61, // (2/3 * 1 + 0 * 1 + 4/5 * 3) / 5 = 46/75 ]; self::assertEquals($average, $report->getAverage(), '', 0.01); } public function testPreventDivideByZeroWhenTruePositiveAndFalsePositiveSumEqualsZero(): void { $labels = [1, 2]; $predicted = [2, 2]; $report = new ClassificationReport($labels, $predicted); self::assertEquals([ 1 => 0.0, 2 => 0.5, ], $report->getPrecision(), '', 0.01); } public function testPreventDivideByZeroWhenTruePositiveAndFalseNegativeSumEqualsZero(): void { $labels = [2, 2, 1]; $predicted = [2, 2, 3]; $report = new ClassificationReport($labels, $predicted); self::assertEquals([ 1 => 0.0, 2 => 1, 3 => 0, ], $report->getPrecision(), '', 0.01); } public function testPreventDividedByZeroWhenPredictedLabelsAllNotMatch(): void { $labels = [1, 2, 3, 4, 5]; $predicted = [2, 3, 4, 5, 6]; $report = new ClassificationReport($labels, $predicted); self::assertEquals([ 'precision' => 0, 'recall' => 0, 'f1score' => 0, ], $report->getAverage(), '', 0.01); } public function testPreventDividedByZeroWhenLabelsAreEmpty(): void { $labels = []; $predicted = []; $report = new ClassificationReport($labels, $predicted); self::assertEquals([ 'precision' => 0, 'recall' => 0, 'f1score' => 0, ], $report->getAverage(), '', 0.01); } }