expectException(InvalidArgumentException::class); $this->expectExceptionMessage('Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive)'); new Perceptron(0, 5000); } public function testPerceptronThrowWhenMaxIterationsOutOfRange(): void { $this->expectException(InvalidArgumentException::class); $this->expectExceptionMessage('Maximum number of iterations must be an integer greater than 0'); new Perceptron(0.001, 0); } public function testPredictSingleSample(): void { // AND problem $samples = [[0, 0], [1, 0], [0, 1], [1, 1], [0.6, 0.6]]; $targets = [0, 0, 0, 1, 1]; $classifier = new Perceptron(0.001, 5000); $classifier->setEarlyStop(false); $classifier->train($samples, $targets); self::assertEquals(0, $classifier->predict([0.1, 0.2])); self::assertEquals(0, $classifier->predict([0, 1])); self::assertEquals(1, $classifier->predict([1.1, 0.8])); // OR problem $samples = [[0.1, 0.1], [0.4, 0.], [0., 0.3], [1, 0], [0, 1], [1, 1]]; $targets = [0, 0, 0, 1, 1, 1]; $classifier = new Perceptron(0.001, 5000, false); $classifier->setEarlyStop(false); $classifier->train($samples, $targets); self::assertEquals(0, $classifier->predict([0., 0.])); self::assertEquals(1, $classifier->predict([0.1, 0.99])); self::assertEquals(1, $classifier->predict([1.1, 0.8])); // By use of One-v-Rest, Perceptron can perform multi-class classification // The samples should be separable by lines perpendicular to the dimensions $samples = [ [0, 0], [0, 1], [1, 0], [1, 1], // First group : a cluster at bottom-left corner in 2D [5, 5], [6, 5], [5, 6], [7, 5], // Second group: another cluster at the middle-right [3, 10], [3, 10], [3, 8], [3, 9], // Third group : cluster at the top-middle ]; $targets = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]; $classifier = new Perceptron(); $classifier->setEarlyStop(false); $classifier->train($samples, $targets); self::assertEquals(0, $classifier->predict([0.5, 0.5])); self::assertEquals(1, $classifier->predict([6.0, 5.0])); self::assertEquals(2, $classifier->predict([3.0, 9.5])); // Extra partial training should lead to the same results. $classifier->partialTrain([[0, 1], [1, 0]], [0, 0], [0, 1, 2]); self::assertEquals(0, $classifier->predict([0.5, 0.5])); self::assertEquals(1, $classifier->predict([6.0, 5.0])); self::assertEquals(2, $classifier->predict([3.0, 9.5])); // Train should clear previous data. $samples = [ [0, 0], [0, 1], [1, 0], [1, 1], // First group : a cluster at bottom-left corner in 2D [5, 5], [6, 5], [5, 6], [7, 5], // Second group: another cluster at the middle-right [3, 10], [3, 10], [3, 8], [3, 9], // Third group : cluster at the top-middle ]; $targets = [2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1]; $classifier->train($samples, $targets); self::assertEquals(2, $classifier->predict([0.5, 0.5])); self::assertEquals(0, $classifier->predict([6.0, 5.0])); self::assertEquals(1, $classifier->predict([3.0, 9.5])); } public function testSaveAndRestore(): void { // Instantinate new Percetron trained for OR problem $samples = [[0, 0], [1, 0], [0, 1], [1, 1]]; $targets = [0, 1, 1, 1]; $classifier = new Perceptron(); $classifier->train($samples, $targets); $testSamples = [[0, 1], [1, 1], [0.2, 0.1]]; $predicted = $classifier->predict($testSamples); $filename = 'perceptron-test-'.random_int(100, 999).'-'.uniqid('', false); $filepath = (string) tempnam(sys_get_temp_dir(), $filename); $modelManager = new ModelManager(); $modelManager->saveToFile($classifier, $filepath); $restoredClassifier = $modelManager->restoreFromFile($filepath); self::assertEquals($classifier, $restoredClassifier); self::assertEquals($predicted, $restoredClassifier->predict($testSamples)); } }