# Classification Report Class for calculate main classifier metrics: precision, recall, F1 score and support. ### Report To generate report you must provide the following parameters: * $actualLabels - (array) true sample labels * $predictedLabels - (array) predicted labels (e.x. from test group) ``` use Phpml\Metric\ClassificationReport; $actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant']; $report = new ClassificationReport($actualLabels, $predictedLabels); ``` Optionally you can provide the following parameter: * $average - (int) averaging method for multi-class classification * `ClassificationReport::MICRO_AVERAGE` = 1 * `ClassificationReport::MACRO_AVERAGE` = 2 (default) * `ClassificationReport::WEIGHTED_AVERAGE` = 3 ### Metrics After creating the report you can draw its individual metrics: * precision (`getPrecision()`) - fraction of retrieved instances that are relevant * recall (`getRecall()`) - fraction of relevant instances that are retrieved * F1 score (`getF1score()`) - measure of a test's accuracy * support (`getSupport()`) - count of testes samples ``` $precision = $report->getPrecision(); // $precision = ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0]; ``` ### Example ``` use Phpml\Metric\ClassificationReport; $actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird']; $predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant']; $report = new ClassificationReport($actualLabels, $predictedLabels); $report->getPrecision(); // ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0] $report->getRecall(); // ['cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67] $report->getF1score(); // ['cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80] $report->getSupport(); // ['cat' => 1, 'ant' => 1, 'bird' => 3] $report->getAverage(); // ['precision' => 0.5, 'recall' => 0.56, 'f1score' => 0.49] ```