mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-21 20:45:10 +00:00
db82afa263
* Update to phpunit 8 * Require at least PHP 7.2
110 lines
3.7 KiB
PHP
110 lines
3.7 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\DimensionReduction;
|
|
|
|
use Phpml\Dataset\Demo\IrisDataset;
|
|
use Phpml\DimensionReduction\LDA;
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\Exception\InvalidOperationException;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class LDATest extends TestCase
|
|
{
|
|
public function testLDA(): void
|
|
{
|
|
// Acceptable error
|
|
$epsilon = 0.001;
|
|
|
|
// IRIS dataset will be used to train LDA
|
|
$dataset = new IrisDataset();
|
|
$lda = new LDA(null, 2);
|
|
$transformed = $lda->fit($dataset->getSamples(), $dataset->getTargets());
|
|
|
|
// Some samples of the Iris data will be checked manually
|
|
// First 3 and last 3 rows from the original dataset
|
|
$data = [
|
|
[5.1, 3.5, 1.4, 0.2],
|
|
[4.9, 3.0, 1.4, 0.2],
|
|
[4.7, 3.2, 1.3, 0.2],
|
|
[6.5, 3.0, 5.2, 2.0],
|
|
[6.2, 3.4, 5.4, 2.3],
|
|
[5.9, 3.0, 5.1, 1.8],
|
|
];
|
|
$transformed2 = [
|
|
[-1.4922092756753, 1.9047102045574],
|
|
[-1.2576556684358, 1.608414450935],
|
|
[-1.3487505965419, 1.749846351699],
|
|
[1.7759343101456, 2.0371552314006],
|
|
[2.0059819019159, 2.4493123003226],
|
|
[1.701474913008, 1.9037880473772],
|
|
];
|
|
|
|
$control = [];
|
|
$control = array_merge($control, array_slice($transformed, 0, 3));
|
|
$control = array_merge($control, array_slice($transformed, -3));
|
|
|
|
$check = function ($row1, $row2) use ($epsilon): void {
|
|
// Due to the fact that the sign of values can be flipped
|
|
// during the calculation of eigenValues, we have to compare
|
|
// absolute value of the values
|
|
$row1 = array_map('abs', $row1);
|
|
$row2 = array_map('abs', $row2);
|
|
self::assertEqualsWithDelta($row1, $row2, $epsilon);
|
|
};
|
|
array_map($check, $control, $transformed2);
|
|
|
|
// Fitted LDA object should be able to return same values again
|
|
// for each projected row
|
|
foreach ($data as $i => $row) {
|
|
$newRow = [$transformed2[$i]];
|
|
$newRow2 = $lda->transform($row);
|
|
|
|
array_map($check, $newRow, $newRow2);
|
|
}
|
|
}
|
|
|
|
public function testLDAThrowWhenTotalVarianceOutOfRange(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$this->expectExceptionMessage('Total variance can be a value between 0.1 and 0.99');
|
|
new LDA(0., null);
|
|
}
|
|
|
|
public function testLDAThrowWhenNumFeaturesOutOfRange(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$this->expectExceptionMessage('Number of features to be preserved should be greater than 0');
|
|
new LDA(null, 0);
|
|
}
|
|
|
|
public function testLDAThrowWhenParameterNotSpecified(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$this->expectExceptionMessage('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
|
new LDA();
|
|
}
|
|
|
|
public function testLDAThrowWhenBothParameterSpecified(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$this->expectExceptionMessage('Either totalVariance or numFeatures should be specified in order to run the algorithm');
|
|
new LDA(0.9, 1);
|
|
}
|
|
|
|
public function testTransformThrowWhenNotFitted(): void
|
|
{
|
|
$samples = [
|
|
[1, 0],
|
|
[1, 1],
|
|
];
|
|
|
|
$pca = new LDA(0.9);
|
|
|
|
$this->expectException(InvalidOperationException::class);
|
|
$this->expectExceptionMessage('LDA has not been fitted with respect to original dataset, please run LDA::fit() first');
|
|
$pca->transform($samples);
|
|
}
|
|
}
|