mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-24 07:38:24 +00:00
61 lines
1.9 KiB
PHP
61 lines
1.9 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Regression;
|
|
|
|
use Phpml\ModelManager;
|
|
use Phpml\Regression\SVR;
|
|
use Phpml\SupportVectorMachine\Kernel;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class SVRTest extends TestCase
|
|
{
|
|
public function testPredictSingleFeatureSamples(): void
|
|
{
|
|
$delta = 0.01;
|
|
|
|
$samples = [[60], [61], [62], [63], [65]];
|
|
$targets = [3.1, 3.6, 3.8, 4, 4.1];
|
|
|
|
$regression = new SVR(Kernel::LINEAR);
|
|
$regression->train($samples, $targets);
|
|
|
|
$this->assertEquals(4.03, $regression->predict([64]), '', $delta);
|
|
}
|
|
|
|
public function testPredictMultiFeaturesSamples(): void
|
|
{
|
|
$delta = 0.01;
|
|
|
|
$samples = [[73676, 1996], [77006, 1998], [10565, 2000], [146088, 1995], [15000, 2001], [65940, 2000], [9300, 2000], [93739, 1996], [153260, 1994], [17764, 2002], [57000, 1998], [15000, 2000]];
|
|
$targets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];
|
|
|
|
$regression = new SVR(Kernel::LINEAR);
|
|
$regression->train($samples, $targets);
|
|
|
|
$this->assertEquals([4109.82, 4112.28], $regression->predict([[60000, 1996], [60000, 2000]]), '', $delta);
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
$samples = [[60], [61], [62], [63], [65]];
|
|
$targets = [3.1, 3.6, 3.8, 4, 4.1];
|
|
|
|
$regression = new SVR(Kernel::LINEAR);
|
|
$regression->train($samples, $targets);
|
|
|
|
$testSamples = [64];
|
|
$predicted = $regression->predict($testSamples);
|
|
|
|
$filename = 'svr-test'.random_int(100, 999).'-'.uniqid();
|
|
$filepath = tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($regression, $filepath);
|
|
|
|
$restoredRegression = $modelManager->restoreFromFile($filepath);
|
|
$this->assertEquals($regression, $restoredRegression);
|
|
$this->assertEquals($predicted, $restoredRegression->predict($testSamples));
|
|
}
|
|
}
|