php-ml/tests/FeatureExtraction/TokenCountVectorizerTest.php
2018-02-10 12:08:58 +01:00

255 lines
6.0 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\FeatureExtraction;
use Phpml\FeatureExtraction\StopWords;
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;
use PHPUnit\Framework\TestCase;
class TokenCountVectorizerTest extends TestCase
{
public function testTransformationWithWhitespaceTokenizer(): void
{
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$vocabulary = [
0 => 'Lorem',
1 => 'ipsum',
2 => 'dolor',
3 => 'sit',
4 => 'amet',
5 => 'Mauris',
6 => 'placerat',
7 => 'diam',
8 => 'eros',
9 => 'fringilla',
];
$tokensCounts = [
[
0 => 1,
1 => 1,
2 => 2,
3 => 1,
4 => 1,
5 => 0,
6 => 0,
7 => 0,
8 => 0,
9 => 0,
],
[
0 => 0,
1 => 1,
2 => 1,
3 => 0,
4 => 0,
5 => 1,
6 => 1,
7 => 0,
8 => 0,
9 => 0,
],
[
0 => 0,
1 => 0,
2 => 0,
3 => 0,
4 => 0,
5 => 1,
6 => 0,
7 => 2,
8 => 1,
9 => 1,
],
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
$vectorizer->fit($samples);
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
$vectorizer->transform($samples);
$this->assertSame($tokensCounts, $samples);
}
public function testTransformationWithMinimumDocumentTokenCountFrequency(): void
{
// word at least in half samples
$samples = [
'Lorem ipsum dolor sit amet',
'Lorem ipsum sit amet',
'ipsum sit amet',
'ipsum sit amet',
];
$vocabulary = [
0 => 'Lorem',
1 => 'ipsum',
2 => 'dolor',
3 => 'sit',
4 => 'amet',
];
$tokensCounts = [
[
0 => 1,
1 => 1,
2 => 0,
3 => 1,
4 => 1,
],
[
0 => 1,
1 => 1,
2 => 0,
3 => 1,
4 => 1,
],
[
0 => 0,
1 => 1,
2 => 0,
3 => 1,
4 => 1,
],
[
0 => 0,
1 => 1,
2 => 0,
3 => 1,
4 => 1,
],
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), null, 0.5);
$vectorizer->fit($samples);
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
$vectorizer->transform($samples);
$this->assertSame($tokensCounts, $samples);
// word at least once in all samples
$samples = [
'Lorem ipsum dolor sit amet',
'Morbi quis sagittis Lorem',
'eros Lorem',
];
$tokensCounts = [
[
0 => 1,
1 => 0,
2 => 0,
3 => 0,
4 => 0,
5 => 0,
6 => 0,
7 => 0,
8 => 0,
],
[
0 => 1,
1 => 0,
2 => 0,
3 => 0,
4 => 0,
5 => 0,
6 => 0,
7 => 0,
8 => 0,
],
[
0 => 1,
1 => 0,
2 => 0,
3 => 0,
4 => 0,
5 => 0,
6 => 0,
7 => 0,
8 => 0,
],
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), null, 1);
$vectorizer->fit($samples);
$vectorizer->transform($samples);
$this->assertSame($tokensCounts, $samples);
}
public function testTransformationWithStopWords(): void
{
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$stopWords = new StopWords(['dolor', 'diam']);
$vocabulary = [
0 => 'Lorem',
1 => 'ipsum',
//2 => 'dolor',
2 => 'sit',
3 => 'amet',
4 => 'Mauris',
5 => 'placerat',
//7 => 'diam',
6 => 'eros',
7 => 'fringilla',
];
$tokensCounts = [
[
0 => 1,
1 => 1,
2 => 1,
3 => 1,
4 => 0,
5 => 0,
6 => 0,
7 => 0,
],
[
0 => 0,
1 => 1,
2 => 0,
3 => 0,
4 => 1,
5 => 1,
6 => 0,
7 => 0,
],
[
0 => 0,
1 => 0,
2 => 0,
3 => 0,
4 => 1,
5 => 0,
6 => 1,
7 => 1,
],
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), $stopWords);
$vectorizer->fit($samples);
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
$vectorizer->transform($samples);
$this->assertSame($tokensCounts, $samples);
}
}