mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-24 15:48:24 +00:00
54 lines
1.2 KiB
PHP
54 lines
1.2 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
|
|
|
|
use Phpml\NeuralNetwork\ActivationFunction\BinaryStep;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class BinaryStepTest extends TestCase
|
|
{
|
|
/**
|
|
* @dataProvider binaryStepProvider
|
|
*
|
|
* @param float|int $value
|
|
*/
|
|
public function testBinaryStepActivationFunction(float $expected, $value): void
|
|
{
|
|
$binaryStep = new BinaryStep();
|
|
|
|
self::assertEquals($expected, $binaryStep->compute($value));
|
|
}
|
|
|
|
public function binaryStepProvider(): array
|
|
{
|
|
return [
|
|
[1, 1],
|
|
[1, 0],
|
|
[0, -0.1],
|
|
];
|
|
}
|
|
|
|
/**
|
|
* @dataProvider binaryStepDerivativeProvider
|
|
*
|
|
* @param float|int $value
|
|
*/
|
|
public function testBinaryStepDerivative(float $expected, $value): void
|
|
{
|
|
$binaryStep = new BinaryStep();
|
|
$activatedValue = $binaryStep->compute($value);
|
|
self::assertEquals($expected, $binaryStep->differentiate($value, $activatedValue));
|
|
}
|
|
|
|
public function binaryStepDerivativeProvider(): array
|
|
{
|
|
return [
|
|
[0, -1],
|
|
[1, 0],
|
|
[0, 1],
|
|
];
|
|
}
|
|
}
|