mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-13 08:56:29 +00:00
353 lines
10 KiB
PHP
353 lines
10 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Classification\Linear;
|
|
|
|
use Phpml\Helper\Predictable;
|
|
use Phpml\Helper\OneVsRest;
|
|
use Phpml\Classification\WeightedClassifier;
|
|
use Phpml\Classification\DecisionTree;
|
|
|
|
class DecisionStump extends WeightedClassifier
|
|
{
|
|
use Predictable, OneVsRest;
|
|
|
|
const AUTO_SELECT = -1;
|
|
|
|
/**
|
|
* @var int
|
|
*/
|
|
protected $givenColumnIndex;
|
|
|
|
/**
|
|
* @var array
|
|
*/
|
|
protected $binaryLabels;
|
|
|
|
/**
|
|
* Lowest error rate obtained while training/optimizing the model
|
|
*
|
|
* @var float
|
|
*/
|
|
protected $trainingErrorRate;
|
|
|
|
/**
|
|
* @var int
|
|
*/
|
|
protected $column;
|
|
|
|
/**
|
|
* @var mixed
|
|
*/
|
|
protected $value;
|
|
|
|
/**
|
|
* @var string
|
|
*/
|
|
protected $operator;
|
|
|
|
/**
|
|
* @var array
|
|
*/
|
|
protected $columnTypes;
|
|
|
|
/**
|
|
* @var int
|
|
*/
|
|
protected $featureCount;
|
|
|
|
/**
|
|
* @var float
|
|
*/
|
|
protected $numSplitCount = 100.0;
|
|
|
|
/**
|
|
* Distribution of samples in the leaves
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $prob;
|
|
|
|
/**
|
|
* A DecisionStump classifier is a one-level deep DecisionTree. It is generally
|
|
* used with ensemble algorithms as in the weak classifier role. <br>
|
|
*
|
|
* If columnIndex is given, then the stump tries to produce a decision node
|
|
* on this column, otherwise in cases given the value of -1, the stump itself
|
|
* decides which column to take for the decision (Default DecisionTree behaviour)
|
|
*
|
|
* @param int $columnIndex
|
|
*/
|
|
public function __construct(int $columnIndex = self::AUTO_SELECT)
|
|
{
|
|
$this->givenColumnIndex = $columnIndex;
|
|
}
|
|
|
|
/**
|
|
* @param array $samples
|
|
* @param array $targets
|
|
* @throws \Exception
|
|
*/
|
|
protected function trainBinary(array $samples, array $targets)
|
|
{
|
|
$this->samples = array_merge($this->samples, $samples);
|
|
$this->targets = array_merge($this->targets, $targets);
|
|
$this->binaryLabels = array_keys(array_count_values($this->targets));
|
|
$this->featureCount = count($this->samples[0]);
|
|
|
|
// If a column index is given, it should be among the existing columns
|
|
if ($this->givenColumnIndex > count($this->samples[0]) - 1) {
|
|
$this->givenColumnIndex = self::AUTO_SELECT;
|
|
}
|
|
|
|
// Check the size of the weights given.
|
|
// If none given, then assign 1 as a weight to each sample
|
|
if ($this->weights) {
|
|
$numWeights = count($this->weights);
|
|
if ($numWeights != count($this->samples)) {
|
|
throw new \Exception("Number of sample weights does not match with number of samples");
|
|
}
|
|
} else {
|
|
$this->weights = array_fill(0, count($this->samples), 1);
|
|
}
|
|
|
|
// Determine type of each column as either "continuous" or "nominal"
|
|
$this->columnTypes = DecisionTree::getColumnTypes($this->samples);
|
|
|
|
// Try to find the best split in the columns of the dataset
|
|
// by calculating error rate for each split point in each column
|
|
$columns = range(0, count($this->samples[0]) - 1);
|
|
if ($this->givenColumnIndex != self::AUTO_SELECT) {
|
|
$columns = [$this->givenColumnIndex];
|
|
}
|
|
|
|
$bestSplit = [
|
|
'value' => 0, 'operator' => '',
|
|
'prob' => [], 'column' => 0,
|
|
'trainingErrorRate' => 1.0];
|
|
foreach ($columns as $col) {
|
|
if ($this->columnTypes[$col] == DecisionTree::CONTINUOUS) {
|
|
$split = $this->getBestNumericalSplit($col);
|
|
} else {
|
|
$split = $this->getBestNominalSplit($col);
|
|
}
|
|
|
|
if ($split['trainingErrorRate'] < $bestSplit['trainingErrorRate']) {
|
|
$bestSplit = $split;
|
|
}
|
|
}
|
|
|
|
// Assign determined best values to the stump
|
|
foreach ($bestSplit as $name => $value) {
|
|
$this->{$name} = $value;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* While finding best split point for a numerical valued column,
|
|
* DecisionStump looks for equally distanced values between minimum and maximum
|
|
* values in the column. Given <i>$count</i> value determines how many split
|
|
* points to be probed. The more split counts, the better performance but
|
|
* worse processing time (Default value is 10.0)
|
|
*
|
|
* @param float $count
|
|
*/
|
|
public function setNumericalSplitCount(float $count)
|
|
{
|
|
$this->numSplitCount = $count;
|
|
}
|
|
|
|
/**
|
|
* Determines best split point for the given column
|
|
*
|
|
* @param int $col
|
|
*
|
|
* @return array
|
|
*/
|
|
protected function getBestNumericalSplit(int $col)
|
|
{
|
|
$values = array_column($this->samples, $col);
|
|
// Trying all possible points may be accomplished in two general ways:
|
|
// 1- Try all values in the $samples array ($values)
|
|
// 2- Artificially split the range of values into several parts and try them
|
|
// We choose the second one because it is faster in larger datasets
|
|
$minValue = min($values);
|
|
$maxValue = max($values);
|
|
$stepSize = ($maxValue - $minValue) / $this->numSplitCount;
|
|
|
|
$split = null;
|
|
|
|
foreach (['<=', '>'] as $operator) {
|
|
// Before trying all possible split points, let's first try
|
|
// the average value for the cut point
|
|
$threshold = array_sum($values) / (float) count($values);
|
|
list($errorRate, $prob) = $this->calculateErrorRate($threshold, $operator, $values);
|
|
if ($split == null || $errorRate < $split['trainingErrorRate']) {
|
|
$split = ['value' => $threshold, 'operator' => $operator,
|
|
'prob' => $prob, 'column' => $col,
|
|
'trainingErrorRate' => $errorRate];
|
|
}
|
|
|
|
// Try other possible points one by one
|
|
for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) {
|
|
$threshold = (float)$step;
|
|
list($errorRate, $prob) = $this->calculateErrorRate($threshold, $operator, $values);
|
|
if ($errorRate < $split['trainingErrorRate']) {
|
|
$split = ['value' => $threshold, 'operator' => $operator,
|
|
'prob' => $prob, 'column' => $col,
|
|
'trainingErrorRate' => $errorRate];
|
|
}
|
|
}// for
|
|
}
|
|
|
|
return $split;
|
|
}
|
|
|
|
/**
|
|
* @param int $col
|
|
*
|
|
* @return array
|
|
*/
|
|
protected function getBestNominalSplit(int $col) : array
|
|
{
|
|
$values = array_column($this->samples, $col);
|
|
$valueCounts = array_count_values($values);
|
|
$distinctVals= array_keys($valueCounts);
|
|
|
|
$split = null;
|
|
|
|
foreach (['=', '!='] as $operator) {
|
|
foreach ($distinctVals as $val) {
|
|
list($errorRate, $prob) = $this->calculateErrorRate($val, $operator, $values);
|
|
|
|
if ($split == null || $split['trainingErrorRate'] < $errorRate) {
|
|
$split = ['value' => $val, 'operator' => $operator,
|
|
'prob' => $prob, 'column' => $col,
|
|
'trainingErrorRate' => $errorRate];
|
|
}
|
|
}
|
|
}
|
|
|
|
return $split;
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @param type $leftValue
|
|
* @param type $operator
|
|
* @param type $rightValue
|
|
*
|
|
* @return boolean
|
|
*/
|
|
protected function evaluate($leftValue, $operator, $rightValue)
|
|
{
|
|
switch ($operator) {
|
|
case '>': return $leftValue > $rightValue;
|
|
case '>=': return $leftValue >= $rightValue;
|
|
case '<': return $leftValue < $rightValue;
|
|
case '<=': return $leftValue <= $rightValue;
|
|
case '=': return $leftValue === $rightValue;
|
|
case '!=':
|
|
case '<>': return $leftValue !== $rightValue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Calculates the ratio of wrong predictions based on the new threshold
|
|
* value given as the parameter
|
|
*
|
|
* @param float $threshold
|
|
* @param string $operator
|
|
* @param array $values
|
|
*
|
|
* @return array
|
|
*/
|
|
protected function calculateErrorRate(float $threshold, string $operator, array $values) : array
|
|
{
|
|
$wrong = 0.0;
|
|
$prob = [];
|
|
$leftLabel = $this->binaryLabels[0];
|
|
$rightLabel= $this->binaryLabels[1];
|
|
|
|
foreach ($values as $index => $value) {
|
|
if ($this->evaluate($value, $operator, $threshold)) {
|
|
$predicted = $leftLabel;
|
|
} else {
|
|
$predicted = $rightLabel;
|
|
}
|
|
|
|
$target = $this->targets[$index];
|
|
if (strval($predicted) != strval($this->targets[$index])) {
|
|
$wrong += $this->weights[$index];
|
|
}
|
|
|
|
if (! isset($prob[$predicted][$target])) {
|
|
$prob[$predicted][$target] = 0;
|
|
}
|
|
$prob[$predicted][$target]++;
|
|
}
|
|
|
|
// Calculate probabilities: Proportion of labels in each leaf
|
|
$dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0));
|
|
foreach ($prob as $leaf => $counts) {
|
|
$leafTotal = (float)array_sum($prob[$leaf]);
|
|
foreach ($counts as $label => $count) {
|
|
if (strval($leaf) == strval($label)) {
|
|
$dist[$leaf] = $count / $leafTotal;
|
|
}
|
|
}
|
|
}
|
|
|
|
return [$wrong / (float) array_sum($this->weights), $dist];
|
|
}
|
|
|
|
/**
|
|
* Returns the probability of the sample of belonging to the given label
|
|
*
|
|
* Probability of a sample is calculated as the proportion of the label
|
|
* within the labels of the training samples in the decision node
|
|
*
|
|
* @param array $sample
|
|
* @param mixed $label
|
|
*
|
|
* @return float
|
|
*/
|
|
protected function predictProbability(array $sample, $label) : float
|
|
{
|
|
$predicted = $this->predictSampleBinary($sample);
|
|
if (strval($predicted) == strval($label)) {
|
|
return $this->prob[$label];
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
/**
|
|
* @param array $sample
|
|
*
|
|
* @return mixed
|
|
*/
|
|
protected function predictSampleBinary(array $sample)
|
|
{
|
|
if ($this->evaluate($sample[$this->column], $this->operator, $this->value)) {
|
|
return $this->binaryLabels[0];
|
|
}
|
|
|
|
return $this->binaryLabels[1];
|
|
}
|
|
|
|
/**
|
|
* @return string
|
|
*/
|
|
public function __toString()
|
|
{
|
|
return "IF $this->column $this->operator $this->value " .
|
|
"THEN " . $this->binaryLabels[0] . " ".
|
|
"ELSE " . $this->binaryLabels[1];
|
|
}
|
|
}
|