mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 00:00:59 +00:00
89 lines
3.1 KiB
PHP
89 lines
3.1 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Classification;
|
|
|
|
use Phpml\Classification\SVC;
|
|
use Phpml\ModelManager;
|
|
use Phpml\SupportVectorMachine\Kernel;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class SVCTest extends TestCase
|
|
{
|
|
public function testPredictSingleSampleWithLinearKernel(): void
|
|
{
|
|
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
|
|
$classifier->train($samples, $labels);
|
|
|
|
self::assertEquals('b', $classifier->predict([3, 2]));
|
|
self::assertEquals('b', $classifier->predict([5, 1]));
|
|
self::assertEquals('b', $classifier->predict([4, 3]));
|
|
self::assertEquals('b', $classifier->predict([4, -5]));
|
|
|
|
self::assertEquals('a', $classifier->predict([2, 3]));
|
|
self::assertEquals('a', $classifier->predict([1, 2]));
|
|
self::assertEquals('a', $classifier->predict([1, 5]));
|
|
self::assertEquals('a', $classifier->predict([3, 10]));
|
|
}
|
|
|
|
public function testPredictArrayOfSamplesWithLinearKernel(): void
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3], [4, -5], [2, 3], [1, 2], [1, 5], [3, 10]];
|
|
$testLabels = ['b', 'b', 'b', 'b', 'a', 'a', 'a', 'a'];
|
|
|
|
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predictions = $classifier->predict($testSamples);
|
|
|
|
self::assertEquals($testLabels, $predictions);
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3]];
|
|
$testLabels = ['b', 'b', 'b'];
|
|
|
|
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), uniqid('svc-test', true));
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
self::assertEquals($predicted, $testLabels);
|
|
}
|
|
|
|
public function testWithNonDotDecimalLocale(): void
|
|
{
|
|
$currentLocale = setlocale(LC_NUMERIC, '0');
|
|
setlocale(LC_NUMERIC, 'pl_PL.utf8');
|
|
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3]];
|
|
$testLabels = ['b', 'b', 'b'];
|
|
|
|
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
|
|
self::assertEquals($classifier->predict($testSamples), $testLabels);
|
|
|
|
setlocale(LC_NUMERIC, (string) $currentLocale);
|
|
}
|
|
}
|