php-ml/tests/Phpml/Helper/Optimizer/StochasticGDTest.php
Yuji Uchiyama d953ef6bfc Fix the implementation of conjugate gradient method (#184)
* Add unit tests for optimizers

* Fix ConjugateGradient

* Fix coding style

* Fix namespace
2018-01-12 10:53:43 +01:00

66 lines
1.8 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\Helper\Optimizer;
use Phpml\Helper\Optimizer\StochasticGD;
use PHPUnit\Framework\TestCase;
class StochasticGDTest extends TestCase
{
public function testRunOptimization(): void
{
// 200 samples from y = -1 + 2x (i.e. theta = [-1, 2])
$samples = [];
$targets = [];
for ($i = -100; $i <= 100; ++$i) {
$x = $i / 100;
$samples[] = [$x];
$targets[] = -1 + 2 * $x;
}
$callback = function ($theta, $sample, $target) {
$y = $theta[0] + $theta[1] * $sample[0];
$cost = ($y - $target) ** 2 / 2;
$grad = $y - $target;
return [$cost, $grad];
};
$optimizer = new StochasticGD(1);
$theta = $optimizer->runOptimization($samples, $targets, $callback);
$this->assertEquals([-1, 2], $theta, '', 0.1);
}
public function testRunOptimization2Dim(): void
{
// 100 samples from y = -1 + 2x0 - 3x1 (i.e. theta = [-1, 2, -3])
$samples = [];
$targets = [];
for ($i = 0; $i < 100; ++$i) {
$x0 = intval($i / 10) / 10;
$x1 = ($i % 10) / 10;
$samples[] = [$x0, $x1];
$targets[] = -1 + 2 * $x0 - 3 * $x1;
}
$callback = function ($theta, $sample, $target) {
$y = $theta[0] + $theta[1] * $sample[0] + $theta[2] * $sample[1];
$cost = ($y - $target) ** 2 / 2;
$grad = $y - $target;
return [$cost, $grad];
};
$optimizer = new StochasticGD(2);
$optimizer->setChangeThreshold(1e-6);
$theta = $optimizer->runOptimization($samples, $targets, $callback);
$this->assertEquals([-1, 2, -3], $theta, '', 0.1);
}
}