mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-28 15:56:36 +00:00
87 lines
3.4 KiB
PHP
87 lines
3.4 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Classification\Linear;
|
|
|
|
use Phpml\Classification\Linear\DecisionStump;
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\ModelManager;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class DecisionStumpTest extends TestCase
|
|
{
|
|
public function testTrainThrowWhenSample(): void
|
|
{
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 0, 1, 1];
|
|
|
|
$classifier = new DecisionStump();
|
|
$classifier->setSampleWeights([0.1, 0.1, 0.1]);
|
|
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$classifier->train($samples, $targets);
|
|
}
|
|
|
|
public function testPredictSingleSample(): void
|
|
{
|
|
// Samples should be separable with a line perpendicular
|
|
// to any dimension given in the dataset
|
|
//
|
|
// First: horizontal test
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 0, 1, 1];
|
|
$classifier = new DecisionStump();
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
self::assertEquals(0, $classifier->predict([1.1, 0.2]));
|
|
self::assertEquals(1, $classifier->predict([0.1, 0.99]));
|
|
self::assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
// Then: vertical test
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 1, 0, 1];
|
|
$classifier = new DecisionStump();
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
self::assertEquals(0, $classifier->predict([0.1, 1.1]));
|
|
self::assertEquals(1, $classifier->predict([1.0, 0.99]));
|
|
self::assertEquals(1, $classifier->predict([1.1, 0.1]));
|
|
|
|
// By use of One-v-Rest, DecisionStump can perform multi-class classification
|
|
// The samples should be separable by lines perpendicular to the dimensions
|
|
$samples = [
|
|
[0, 0], [0, 1], [1, 0], [1, 1], // First group : a cluster at bottom-left corner in 2D
|
|
[5, 5], [6, 5], [5, 6], [7, 5], // Second group: another cluster at the middle-right
|
|
[3, 10], [3, 10], [3, 8], [3, 9], // Third group : cluster at the top-middle
|
|
];
|
|
$targets = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2];
|
|
|
|
$classifier = new DecisionStump();
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.5, 0.5]));
|
|
self::assertEquals(1, $classifier->predict([6.0, 5.0]));
|
|
self::assertEquals(2, $classifier->predict([3.5, 9.5]));
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
// Instantinate new Percetron trained for OR problem
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 1, 1, 1];
|
|
$classifier = new DecisionStump();
|
|
$classifier->train($samples, $targets);
|
|
$testSamples = [[0, 1], [1, 1], [0.2, 0.1]];
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'dstump-test-'.random_int(100, 999).'-'.uniqid('', false);
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
}
|