mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 08:10:56 +00:00
106 lines
3.4 KiB
PHP
106 lines
3.4 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Math\Statistic;
|
|
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\Math\Statistic\Covariance;
|
|
use Phpml\Math\Statistic\Mean;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class CovarianceTest extends TestCase
|
|
{
|
|
public function testSimpleCovariance(): void
|
|
{
|
|
// Acceptable error
|
|
$epsilon = 0.001;
|
|
|
|
// First a simple example whose result is known and given in
|
|
// http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
|
|
$matrix = [
|
|
[0.69, 0.49],
|
|
[-1.31, -1.21],
|
|
[0.39, 0.99],
|
|
[0.09, 0.29],
|
|
[1.29, 1.09],
|
|
[0.49, 0.79],
|
|
[0.19, -0.31],
|
|
[-0.81, -0.81],
|
|
[-0.31, -0.31],
|
|
[-0.71, -1.01],
|
|
];
|
|
$knownCovariance = [
|
|
[0.616555556, 0.615444444],
|
|
[0.615444444, 0.716555556], ];
|
|
$x = array_column($matrix, 0);
|
|
$y = array_column($matrix, 1);
|
|
|
|
// Calculate only one covariance value: Cov(x, y)
|
|
$cov1 = Covariance::fromDataset($matrix, 0, 0);
|
|
self::assertEquals($cov1, $knownCovariance[0][0], '', $epsilon);
|
|
$cov1 = Covariance::fromXYArrays($x, $x);
|
|
self::assertEquals($cov1, $knownCovariance[0][0], '', $epsilon);
|
|
|
|
$cov2 = Covariance::fromDataset($matrix, 0, 1);
|
|
self::assertEquals($cov2, $knownCovariance[0][1], '', $epsilon);
|
|
$cov2 = Covariance::fromXYArrays($x, $y);
|
|
self::assertEquals($cov2, $knownCovariance[0][1], '', $epsilon);
|
|
|
|
// Second: calculation cov matrix with automatic means for each column
|
|
$covariance = Covariance::covarianceMatrix($matrix);
|
|
self::assertEquals($knownCovariance, $covariance, '', $epsilon);
|
|
|
|
// Thirdly, CovMatrix: Means are precalculated and given to the method
|
|
$x = array_column($matrix, 0);
|
|
$y = array_column($matrix, 1);
|
|
$meanX = Mean::arithmetic($x);
|
|
$meanY = Mean::arithmetic($y);
|
|
|
|
$covariance = Covariance::covarianceMatrix($matrix, [$meanX, $meanY]);
|
|
self::assertEquals($knownCovariance, $covariance, '', $epsilon);
|
|
}
|
|
|
|
public function testThrowExceptionOnEmptyX(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromXYArrays([], [1, 2, 3]);
|
|
}
|
|
|
|
public function testThrowExceptionOnEmptyY(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromXYArrays([1, 2, 3], []);
|
|
}
|
|
|
|
public function testThrowExceptionOnTooSmallArrayIfSample(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromXYArrays([1], [2], true);
|
|
}
|
|
|
|
public function testThrowExceptionIfEmptyDataset(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromDataset([], 0, 1);
|
|
}
|
|
|
|
public function testThrowExceptionOnTooSmallDatasetIfSample(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromDataset([1], 0, 1);
|
|
}
|
|
|
|
public function testThrowExceptionWhenKIndexIsOutOfBound(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromDataset([1, 2, 3], 2, 5);
|
|
}
|
|
|
|
public function testThrowExceptionWhenIIndexIsOutOfBound(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
Covariance::fromDataset([1, 2, 3], 5, 2);
|
|
}
|
|
}
|