php-ml/tests/Phpml/Metric/ClassificationReportTest.php
2016-07-19 22:01:39 +02:00

51 lines
2.0 KiB
PHP

<?php
declare (strict_types = 1);
namespace tests\Phpml\Metric;
use Phpml\Metric\ClassificationReport;
class ClassificationReportTest extends \PHPUnit_Framework_TestCase
{
public function testClassificationReportGenerateWithStringLabels()
{
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
$report = new ClassificationReport($labels, $predicted);
$precision = ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0];
$recall = ['cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67];
$f1score = ['cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80];
$support = ['cat' => 1, 'ant' => 1, 'bird' => 3];
$average = ['precision' => 0.75, 'recall' => 0.83, 'f1score' => 0.73];
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
$this->assertEquals($support, $report->getSupport(), '', 0.01);
$this->assertEquals($average, $report->getAverage(), '', 0.01);
}
public function testClassificationReportGenerateWithNumericLabels()
{
$labels = [0, 1, 2, 2, 2];
$predicted = [0, 0, 2, 2, 1];
$report = new ClassificationReport($labels, $predicted);
$precision = [0 => 0.5, 1 => 0.0, 2 => 1.0];
$recall = [0 => 1.0, 1 => 0.0, 2 => 0.67];
$f1score = [0 => 0.67, 1 => 0.0, 2 => 0.80];
$support = [0 => 1, 1 => 1, 2 => 3];
$average = ['precision' => 0.75, 'recall' => 0.83, 'f1score' => 0.73];
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
$this->assertEquals($support, $report->getSupport(), '', 0.01);
$this->assertEquals($average, $report->getAverage(), '', 0.01);
}
}