mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-16 18:25:12 +00:00
a348111e97
* tests: update to PHPUnit 6.0 with rector * fix namespaces on tests * composer + tests: use standard test namespace naming * update travis * resolve conflict * phpstan lvl 2 * phpstan lvl 3 * phpstan lvl 4 * phpstan lvl 5 * phpstan lvl 6 * phpstan lvl 7 * level max * resolve conflict * [cs] clean empty docs * composer: bump to PHPUnit 6.4 * cleanup * composer + travis: add phpstan * phpstan lvl 1 * composer: update dev deps * phpstan fixes * update Contributing with new tools * docs: link fixes, PHP version update * composer: drop php-cs-fixer, cs already handled by ecs * ecs: add old set rules * [cs] apply rest of rules
262 lines
6.7 KiB
PHP
262 lines
6.7 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Helper\Optimizer;
|
|
|
|
use Closure;
|
|
|
|
/**
|
|
* Stochastic Gradient Descent optimization method
|
|
* to find a solution for the equation A.ϴ = y where
|
|
* A (samples) and y (targets) are known and ϴ is unknown.
|
|
*/
|
|
class StochasticGD extends Optimizer
|
|
{
|
|
/**
|
|
* A (samples)
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $samples = [];
|
|
|
|
/**
|
|
* y (targets)
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $targets = [];
|
|
|
|
/**
|
|
* Callback function to get the gradient and cost value
|
|
* for a specific set of theta (ϴ) and a pair of sample & target
|
|
*
|
|
* @var \Closure|null
|
|
*/
|
|
protected $gradientCb = null;
|
|
|
|
/**
|
|
* Maximum number of iterations used to train the model
|
|
*
|
|
* @var int
|
|
*/
|
|
protected $maxIterations = 1000;
|
|
|
|
/**
|
|
* Learning rate is used to control the speed of the optimization.<br>
|
|
*
|
|
* Larger values of lr may overshoot the optimum or even cause divergence
|
|
* while small values slows down the convergence and increases the time
|
|
* required for the training
|
|
*
|
|
* @var float
|
|
*/
|
|
protected $learningRate = 0.001;
|
|
|
|
/**
|
|
* Minimum amount of change in the weights and error values
|
|
* between iterations that needs to be obtained to continue the training
|
|
*
|
|
* @var float
|
|
*/
|
|
protected $threshold = 1e-4;
|
|
|
|
/**
|
|
* Enable/Disable early stopping by checking the weight & cost values
|
|
* to see whether they changed large enough to continue the optimization
|
|
*
|
|
* @var bool
|
|
*/
|
|
protected $enableEarlyStop = true;
|
|
|
|
/**
|
|
* List of values obtained by evaluating the cost function at each iteration
|
|
* of the algorithm
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $costValues = [];
|
|
|
|
/**
|
|
* Initializes the SGD optimizer for the given number of dimensions
|
|
*/
|
|
public function __construct(int $dimensions)
|
|
{
|
|
// Add one more dimension for the bias
|
|
parent::__construct($dimensions + 1);
|
|
|
|
$this->dimensions = $dimensions;
|
|
}
|
|
|
|
/**
|
|
* Sets minimum value for the change in the theta values
|
|
* between iterations to continue the iterations.<br>
|
|
*
|
|
* If change in the theta is less than given value then the
|
|
* algorithm will stop training
|
|
*
|
|
* @return $this
|
|
*/
|
|
public function setChangeThreshold(float $threshold = 1e-5)
|
|
{
|
|
$this->threshold = $threshold;
|
|
|
|
return $this;
|
|
}
|
|
|
|
/**
|
|
* Enable/Disable early stopping by checking at each iteration
|
|
* whether changes in theta or cost value are not large enough
|
|
*
|
|
* @return $this
|
|
*/
|
|
public function setEarlyStop(bool $enable = true)
|
|
{
|
|
$this->enableEarlyStop = $enable;
|
|
|
|
return $this;
|
|
}
|
|
|
|
/**
|
|
* @return $this
|
|
*/
|
|
public function setLearningRate(float $learningRate)
|
|
{
|
|
$this->learningRate = $learningRate;
|
|
|
|
return $this;
|
|
}
|
|
|
|
/**
|
|
* @return $this
|
|
*/
|
|
public function setMaxIterations(int $maxIterations)
|
|
{
|
|
$this->maxIterations = $maxIterations;
|
|
|
|
return $this;
|
|
}
|
|
|
|
/**
|
|
* Optimization procedure finds the unknow variables for the equation A.ϴ = y
|
|
* for the given samples (A) and targets (y).<br>
|
|
*
|
|
* The cost function to minimize and the gradient of the function are to be
|
|
* handled by the callback function provided as the third parameter of the method.
|
|
*/
|
|
public function runOptimization(array $samples, array $targets, Closure $gradientCb): ?array
|
|
{
|
|
$this->samples = $samples;
|
|
$this->targets = $targets;
|
|
$this->gradientCb = $gradientCb;
|
|
|
|
$currIter = 0;
|
|
$bestTheta = null;
|
|
$bestScore = 0.0;
|
|
$this->costValues = [];
|
|
|
|
while ($this->maxIterations > $currIter++) {
|
|
$theta = $this->theta;
|
|
|
|
// Update the guess
|
|
$cost = $this->updateTheta();
|
|
|
|
// Save the best theta in the "pocket" so that
|
|
// any future set of theta worse than this will be disregarded
|
|
if ($bestTheta == null || $cost <= $bestScore) {
|
|
$bestTheta = $theta;
|
|
$bestScore = $cost;
|
|
}
|
|
|
|
// Add the cost value for this iteration to the list
|
|
$this->costValues[] = $cost;
|
|
|
|
// Check for early stop
|
|
if ($this->enableEarlyStop && $this->earlyStop($theta)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
$this->clear();
|
|
|
|
// Solution in the pocket is better than or equal to the last state
|
|
// so, we use this solution
|
|
return $this->theta = (array) $bestTheta;
|
|
}
|
|
|
|
/**
|
|
* Returns the list of cost values for each iteration executed in
|
|
* last run of the optimization
|
|
*/
|
|
public function getCostValues(): array
|
|
{
|
|
return $this->costValues;
|
|
}
|
|
|
|
protected function updateTheta(): float
|
|
{
|
|
$jValue = 0.0;
|
|
$theta = $this->theta;
|
|
|
|
foreach ($this->samples as $index => $sample) {
|
|
$target = $this->targets[$index];
|
|
|
|
$result = ($this->gradientCb)($theta, $sample, $target);
|
|
|
|
[$error, $gradient, $penalty] = array_pad($result, 3, 0);
|
|
|
|
// Update bias
|
|
$this->theta[0] -= $this->learningRate * $gradient;
|
|
|
|
// Update other values
|
|
for ($i = 1; $i <= $this->dimensions; ++$i) {
|
|
$this->theta[$i] -= $this->learningRate *
|
|
($gradient * $sample[$i - 1] + $penalty * $this->theta[$i]);
|
|
}
|
|
|
|
// Sum error rate
|
|
$jValue += $error;
|
|
}
|
|
|
|
return $jValue / count($this->samples);
|
|
}
|
|
|
|
/**
|
|
* Checks if the optimization is not effective enough and can be stopped
|
|
* in case large enough changes in the solution do not happen
|
|
*/
|
|
protected function earlyStop(array $oldTheta): bool
|
|
{
|
|
// Check for early stop: No change larger than threshold (default 1e-5)
|
|
$diff = array_map(
|
|
function ($w1, $w2) {
|
|
return abs($w1 - $w2) > $this->threshold ? 1 : 0;
|
|
},
|
|
$oldTheta,
|
|
$this->theta
|
|
);
|
|
|
|
if (array_sum($diff) == 0) {
|
|
return true;
|
|
}
|
|
|
|
// Check if the last two cost values are almost the same
|
|
$costs = array_slice($this->costValues, -2);
|
|
if (count($costs) == 2 && abs($costs[1] - $costs[0]) < $this->threshold) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Clears the optimizer internal vars after the optimization process.
|
|
*/
|
|
protected function clear(): void
|
|
{
|
|
$this->samples = [];
|
|
$this->targets = [];
|
|
$this->gradientCb = null;
|
|
}
|
|
}
|