mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-17 02:35:09 +00:00
a348111e97
* tests: update to PHPUnit 6.0 with rector * fix namespaces on tests * composer + tests: use standard test namespace naming * update travis * resolve conflict * phpstan lvl 2 * phpstan lvl 3 * phpstan lvl 4 * phpstan lvl 5 * phpstan lvl 6 * phpstan lvl 7 * level max * resolve conflict * [cs] clean empty docs * composer: bump to PHPUnit 6.4 * cleanup * composer + travis: add phpstan * phpstan lvl 1 * composer: update dev deps * phpstan fixes * update Contributing with new tools * docs: link fixes, PHP version update * composer: drop php-cs-fixer, cs already handled by ecs * ecs: add old set rules * [cs] apply rest of rules
133 lines
3.5 KiB
PHP
133 lines
3.5 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Metric;
|
|
|
|
use Phpml\Metric\ClassificationReport;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class ClassificationReportTest extends TestCase
|
|
{
|
|
public function testClassificationReportGenerateWithStringLabels(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
'cat' => 0.5,
|
|
'ant' => 0.0,
|
|
'bird' => 1.0,
|
|
];
|
|
$recall = [
|
|
'cat' => 1.0,
|
|
'ant' => 0.0,
|
|
'bird' => 0.67,
|
|
];
|
|
$f1score = [
|
|
'cat' => 0.67,
|
|
'ant' => 0.0,
|
|
'bird' => 0.80,
|
|
];
|
|
$support = [
|
|
'cat' => 1,
|
|
'ant' => 1,
|
|
'bird' => 3,
|
|
];
|
|
$average = [
|
|
'precision' => 0.75,
|
|
'recall' => 0.83,
|
|
'f1score' => 0.73,
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportGenerateWithNumericLabels(): void
|
|
{
|
|
$labels = [0, 1, 2, 2, 2];
|
|
$predicted = [0, 0, 2, 2, 1];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
0 => 0.5,
|
|
1 => 0.0,
|
|
2 => 1.0,
|
|
];
|
|
$recall = [
|
|
0 => 1.0,
|
|
1 => 0.0,
|
|
2 => 0.67,
|
|
];
|
|
$f1score = [
|
|
0 => 0.67,
|
|
1 => 0.0,
|
|
2 => 0.80,
|
|
];
|
|
$support = [
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 3,
|
|
];
|
|
$average = [
|
|
'precision' => 0.75,
|
|
'recall' => 0.83,
|
|
'f1score' => 0.73,
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalsePositiveSumEqualsZero(): void
|
|
{
|
|
$labels = [1, 2];
|
|
$predicted = [2, 2];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 0.5,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalseNegativeSumEqualsZero(): void
|
|
{
|
|
$labels = [2, 2, 1];
|
|
$predicted = [2, 2, 3];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 1,
|
|
3 => 0,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDividedByZeroWhenPredictedLabelsAllNotMatch(): void
|
|
{
|
|
$labels = [1, 2, 3, 4, 5];
|
|
$predicted = [2, 3, 4, 5, 6];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
'precision' => 0,
|
|
'recall' => 0,
|
|
'f1score' => 0,
|
|
], $report->getAverage(), '', 0.01);
|
|
}
|
|
}
|