php-ml/tests/Math/LinearAlgebra/EigenvalueDecompositionTest.php
Arkadiusz Kondas 0a15561352
Fix KMeans and EigenvalueDecomposition (#235)
* Fix kmeans cluster and eigenvalue decomposition

* Fix kmeans space

* Fix code style
2018-02-18 00:09:24 +01:00

105 lines
3.3 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\Math\LinearAlgebra;
use Phpml\Math\LinearAlgebra\EigenvalueDecomposition;
use Phpml\Math\Matrix;
use PHPUnit\Framework\TestCase;
class EigenvalueDecompositionTest extends TestCase
{
public function testKnownSymmetricMatrixDecomposition(): void
{
// First a simple example whose result is known and given in
// http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
$matrix = [
[0.616555556, 0.615444444],
[0.614444444, 0.716555556],
];
$decomp = new EigenvalueDecomposition($matrix);
self::assertEquals([0.0490833989, 1.28402771], $decomp->getRealEigenvalues(), '', 0.001);
self::assertEquals([
[-0.735178656, 0.677873399],
[-0.677873399, -0.735178656],
], $decomp->getEigenvectors(), '', 0.001);
}
public function testMatrixWithAllZeroRow(): void
{
// http://www.wolframalpha.com/widgets/view.jsp?id=9aa01caf50c9307e9dabe159c9068c41
$matrix = [
[10, 0, 0],
[0, 6, 0],
[0, 0, 0],
];
$decomp = new EigenvalueDecomposition($matrix);
self::assertEquals([0.0, 6.0, 10.0], $decomp->getRealEigenvalues(), '', 0.0001);
self::assertEquals([
[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
], $decomp->getEigenvectors(), '', 0.0001);
}
public function testMatrixThatCauseErrorWithStrictComparision(): void
{
// http://www.wolframalpha.com/widgets/view.jsp?id=9aa01caf50c9307e9dabe159c9068c41
$matrix = [
[1, 0, 3],
[0, 1, 7],
[3, 7, 4],
];
$decomp = new EigenvalueDecomposition($matrix);
self::assertEquals([-5.2620873481, 1.0, 10.2620873481], $decomp->getRealEigenvalues(), '', 0.000001);
self::assertEquals([
[-0.3042688, -0.709960552, 0.63511928],
[-0.9191450, 0.393919298, 0.0],
[0.25018574, 0.5837667, 0.7724140],
], $decomp->getEigenvectors(), '', 0.0001);
}
public function testRandomSymmetricMatrixEigenPairs(): void
{
// Acceptable error
$epsilon = 0.001;
// Secondly, generate a symmetric square matrix
// and test for A.v=λ.v
// (We, for now, omit non-symmetric matrices whose eigenvalues can be complex numbers)
$len = 3;
srand((int) microtime(true) * 1000);
$A = array_fill(0, $len, array_fill(0, $len, 0.0));
for ($i = 0; $i < $len; ++$i) {
for ($k = 0; $k < $len; ++$k) {
if ($i > $k) {
$A[$i][$k] = $A[$k][$i];
} else {
$A[$i][$k] = random_int(0, 10);
}
}
}
$decomp = new EigenvalueDecomposition($A);
$eigValues = $decomp->getRealEigenvalues();
$eigVectors = $decomp->getEigenvectors();
foreach ($eigValues as $index => $lambda) {
$m1 = new Matrix($A);
$m2 = (new Matrix($eigVectors[$index]))->transpose();
// A.v=λ.v
$leftSide = $m1->multiply($m2)->toArray();
$rightSide = $m2->multiplyByScalar($lambda)->toArray();
self::assertEquals($leftSide, $rightSide, '', $epsilon);
}
}
}