mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-29 00:06:31 +00:00
83 lines
2.8 KiB
PHP
83 lines
2.8 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Classification\Ensemble;
|
|
|
|
use Phpml\Classification\Ensemble\AdaBoost;
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\ModelManager;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class AdaBoostTest extends TestCase
|
|
{
|
|
public function testTrainThrowWhenMultiClassTargetGiven(): void
|
|
{
|
|
$samples = [
|
|
[0, 0],
|
|
[0.5, 0.5],
|
|
[1, 1],
|
|
];
|
|
$targets = [
|
|
0,
|
|
1,
|
|
2,
|
|
];
|
|
|
|
$classifier = new AdaBoost();
|
|
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$classifier->train($samples, $targets);
|
|
}
|
|
|
|
public function testPredictSingleSample(): void
|
|
{
|
|
// AND problem
|
|
$samples = [[0.1, 0.3], [1, 0], [0, 1], [1, 1], [0.9, 0.8], [1.1, 1.1]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.99]));
|
|
self::assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
// OR problem
|
|
$samples = [[0, 0], [0.1, 0.2], [0.2, 0.1], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
self::assertEquals(1, $classifier->predict([0.1, 0.99]));
|
|
self::assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
// XOR problem
|
|
$samples = [[0.1, 0.2], [1., 1.], [0.9, 0.8], [0., 1.], [1., 0.], [0.2, 0.8]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost(5);
|
|
$classifier->train($samples, $targets);
|
|
self::assertEquals(0, $classifier->predict([0.1, 0.1]));
|
|
self::assertEquals(1, $classifier->predict([0, 0.999]));
|
|
self::assertEquals(0, $classifier->predict([1.1, 0.8]));
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
// Instantinate new Percetron trained for OR problem
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
$testSamples = [[0, 1], [1, 1], [0.2, 0.1]];
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'adaboost-test-'.random_int(100, 999).'-'.uniqid('', false);
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
}
|