mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-15 01:44:05 +00:00
726cf4cddf
* travis: move coveralls here, decouple from package * composer: use PSR4 * phpunit: simpler config * travis: add ecs run * composer: add ecs dev * use standard vendor/bin directory for dependency bins, confuses with local bins and require gitignore handling * ecs: add PSR2 * [cs] PSR2 spacing fixes * [cs] PSR2 class name fix * [cs] PHP7 fixes - return semicolon spaces, old rand functions, typehints * [cs] fix less strict typehints * fix typehints to make tests pass * ecs: ignore typehint-less elements * [cs] standardize arrays * [cs] standardize docblock, remove unused comments * [cs] use self where possible * [cs] sort class elements, from public to private * [cs] do not use yoda (found less yoda-cases, than non-yoda) * space * [cs] do not assign in condition * [cs] use namespace imports if possible * [cs] use ::class over strings * [cs] fix defaults for arrays properties, properties and constants single spacing * cleanup ecs comments * [cs] use item per line in multi-items array * missing line * misc * rebase
65 lines
2.4 KiB
PHP
65 lines
2.4 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace tests\Phpml\Classification\Ensemble;
|
|
|
|
use Phpml\Classification\Ensemble\AdaBoost;
|
|
use Phpml\ModelManager;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class AdaBoostTest extends TestCase
|
|
{
|
|
public function testPredictSingleSample()
|
|
{
|
|
// AND problem
|
|
$samples = [[0.1, 0.3], [1, 0], [0, 1], [1, 1], [0.9, 0.8], [1.1, 1.1]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
$this->assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
$this->assertEquals(0, $classifier->predict([0.1, 0.99]));
|
|
$this->assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
// OR problem
|
|
$samples = [[0, 0], [0.1, 0.2], [0.2, 0.1], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
$this->assertEquals(0, $classifier->predict([0.1, 0.2]));
|
|
$this->assertEquals(1, $classifier->predict([0.1, 0.99]));
|
|
$this->assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
// XOR problem
|
|
$samples = [[0.1, 0.2], [1., 1.], [0.9, 0.8], [0., 1.], [1., 0.], [0.2, 0.8]];
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
$classifier = new AdaBoost(5);
|
|
$classifier->train($samples, $targets);
|
|
$this->assertEquals(0, $classifier->predict([0.1, 0.1]));
|
|
$this->assertEquals(1, $classifier->predict([0, 0.999]));
|
|
$this->assertEquals(0, $classifier->predict([1.1, 0.8]));
|
|
|
|
return $classifier;
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
// Instantinate new Percetron trained for OR problem
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
$targets = [0, 1, 1, 1];
|
|
$classifier = new AdaBoost();
|
|
$classifier->train($samples, $targets);
|
|
$testSamples = [[0, 1], [1, 1], [0.2, 0.1]];
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'adaboost-test-'.random_int(100, 999).'-'.uniqid();
|
|
$filepath = tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
$this->assertEquals($classifier, $restoredClassifier);
|
|
$this->assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
}
|