mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-28 15:56:36 +00:00
85 lines
3.2 KiB
PHP
85 lines
3.2 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Classification;
|
|
|
|
use Phpml\Classification\KNearestNeighbors;
|
|
use Phpml\Math\Distance\Chebyshev;
|
|
use Phpml\ModelManager;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class KNearestNeighborsTest extends TestCase
|
|
{
|
|
public function testPredictSingleSampleWithDefaultK(): void
|
|
{
|
|
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$classifier = new KNearestNeighbors();
|
|
$classifier->train($samples, $labels);
|
|
|
|
self::assertEquals('b', $classifier->predict([3, 2]));
|
|
self::assertEquals('b', $classifier->predict([5, 1]));
|
|
self::assertEquals('b', $classifier->predict([4, 3]));
|
|
self::assertEquals('b', $classifier->predict([4, -5]));
|
|
|
|
self::assertEquals('a', $classifier->predict([2, 3]));
|
|
self::assertEquals('a', $classifier->predict([1, 2]));
|
|
self::assertEquals('a', $classifier->predict([1, 5]));
|
|
self::assertEquals('a', $classifier->predict([3, 10]));
|
|
}
|
|
|
|
public function testPredictArrayOfSamples(): void
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3], [4, -5], [2, 3], [1, 2], [1, 5], [3, 10]];
|
|
$testLabels = ['b', 'b', 'b', 'b', 'a', 'a', 'a', 'a'];
|
|
|
|
$classifier = new KNearestNeighbors();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
self::assertEquals($testLabels, $predicted);
|
|
}
|
|
|
|
public function testPredictArrayOfSamplesUsingChebyshevDistanceMetric(): void
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3], [4, -5], [2, 3], [1, 2], [1, 5], [3, 10]];
|
|
$testLabels = ['b', 'b', 'b', 'b', 'a', 'a', 'a', 'a'];
|
|
|
|
$classifier = new KNearestNeighbors(3, new Chebyshev());
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
self::assertEquals($testLabels, $predicted);
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3], [4, -5], [2, 3], [1, 2], [1, 5], [3, 10]];
|
|
|
|
// Using non-default constructor parameters to check that their values are restored.
|
|
$classifier = new KNearestNeighbors(3, new Chebyshev());
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'knearest-neighbors-test-'.random_int(100, 999).'-'.uniqid('', false);
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
}
|