mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-22 21:15:10 +00:00
a348111e97
* tests: update to PHPUnit 6.0 with rector * fix namespaces on tests * composer + tests: use standard test namespace naming * update travis * resolve conflict * phpstan lvl 2 * phpstan lvl 3 * phpstan lvl 4 * phpstan lvl 5 * phpstan lvl 6 * phpstan lvl 7 * level max * resolve conflict * [cs] clean empty docs * composer: bump to PHPUnit 6.4 * cleanup * composer + travis: add phpstan * phpstan lvl 1 * composer: update dev deps * phpstan fixes * update Contributing with new tools * docs: link fixes, PHP version update * composer: drop php-cs-fixer, cs already handled by ecs * ecs: add old set rules * [cs] apply rest of rules
255 lines
6.0 KiB
PHP
255 lines
6.0 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\FeatureExtraction;
|
|
|
|
use Phpml\FeatureExtraction\StopWords;
|
|
use Phpml\FeatureExtraction\TokenCountVectorizer;
|
|
use Phpml\Tokenization\WhitespaceTokenizer;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class TokenCountVectorizerTest extends TestCase
|
|
{
|
|
public function testTransformationWithWhitespaceTokenizer(): void
|
|
{
|
|
$samples = [
|
|
'Lorem ipsum dolor sit amet dolor',
|
|
'Mauris placerat ipsum dolor',
|
|
'Mauris diam eros fringilla diam',
|
|
];
|
|
|
|
$vocabulary = [
|
|
0 => 'Lorem',
|
|
1 => 'ipsum',
|
|
2 => 'dolor',
|
|
3 => 'sit',
|
|
4 => 'amet',
|
|
5 => 'Mauris',
|
|
6 => 'placerat',
|
|
7 => 'diam',
|
|
8 => 'eros',
|
|
9 => 'fringilla',
|
|
];
|
|
|
|
$tokensCounts = [
|
|
[
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 2,
|
|
3 => 1,
|
|
4 => 1,
|
|
5 => 0,
|
|
6 => 0,
|
|
7 => 0,
|
|
8 => 0,
|
|
9 => 0,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 1,
|
|
2 => 1,
|
|
3 => 0,
|
|
4 => 0,
|
|
5 => 1,
|
|
6 => 1,
|
|
7 => 0,
|
|
8 => 0,
|
|
9 => 0,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 0,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 0,
|
|
5 => 1,
|
|
6 => 0,
|
|
7 => 2,
|
|
8 => 1,
|
|
9 => 1,
|
|
],
|
|
];
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
|
|
|
|
$vectorizer->fit($samples);
|
|
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
|
|
|
|
$vectorizer->transform($samples);
|
|
$this->assertSame($tokensCounts, $samples);
|
|
}
|
|
|
|
public function testTransformationWithMinimumDocumentTokenCountFrequency(): void
|
|
{
|
|
// word at least in half samples
|
|
$samples = [
|
|
'Lorem ipsum dolor sit amet',
|
|
'Lorem ipsum sit amet',
|
|
'ipsum sit amet',
|
|
'ipsum sit amet',
|
|
];
|
|
|
|
$vocabulary = [
|
|
0 => 'Lorem',
|
|
1 => 'ipsum',
|
|
2 => 'dolor',
|
|
3 => 'sit',
|
|
4 => 'amet',
|
|
];
|
|
|
|
$tokensCounts = [
|
|
[
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 0,
|
|
3 => 1,
|
|
4 => 1,
|
|
],
|
|
[
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 0,
|
|
3 => 1,
|
|
4 => 1,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 1,
|
|
2 => 0,
|
|
3 => 1,
|
|
4 => 1,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 1,
|
|
2 => 0,
|
|
3 => 1,
|
|
4 => 1,
|
|
],
|
|
];
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), null, 0.5);
|
|
|
|
$vectorizer->fit($samples);
|
|
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
|
|
|
|
$vectorizer->transform($samples);
|
|
$this->assertSame($tokensCounts, $samples);
|
|
|
|
// word at least once in all samples
|
|
$samples = [
|
|
'Lorem ipsum dolor sit amet',
|
|
'Morbi quis sagittis Lorem',
|
|
'eros Lorem',
|
|
];
|
|
|
|
$tokensCounts = [
|
|
[
|
|
0 => 1,
|
|
1 => 0,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 0,
|
|
5 => 0,
|
|
6 => 0,
|
|
7 => 0,
|
|
8 => 0,
|
|
],
|
|
[
|
|
0 => 1,
|
|
1 => 0,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 0,
|
|
5 => 0,
|
|
6 => 0,
|
|
7 => 0,
|
|
8 => 0,
|
|
],
|
|
[
|
|
0 => 1,
|
|
1 => 0,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 0,
|
|
5 => 0,
|
|
6 => 0,
|
|
7 => 0,
|
|
8 => 0,
|
|
],
|
|
];
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), null, 1);
|
|
$vectorizer->fit($samples);
|
|
$vectorizer->transform($samples);
|
|
|
|
$this->assertSame($tokensCounts, $samples);
|
|
}
|
|
|
|
public function testTransformationWithStopWords(): void
|
|
{
|
|
$samples = [
|
|
'Lorem ipsum dolor sit amet dolor',
|
|
'Mauris placerat ipsum dolor',
|
|
'Mauris diam eros fringilla diam',
|
|
];
|
|
|
|
$stopWords = new StopWords(['dolor', 'diam']);
|
|
|
|
$vocabulary = [
|
|
0 => 'Lorem',
|
|
1 => 'ipsum',
|
|
//2 => 'dolor',
|
|
2 => 'sit',
|
|
3 => 'amet',
|
|
4 => 'Mauris',
|
|
5 => 'placerat',
|
|
//7 => 'diam',
|
|
6 => 'eros',
|
|
7 => 'fringilla',
|
|
];
|
|
|
|
$tokensCounts = [
|
|
[
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 1,
|
|
3 => 1,
|
|
4 => 0,
|
|
5 => 0,
|
|
6 => 0,
|
|
7 => 0,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 1,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 1,
|
|
5 => 1,
|
|
6 => 0,
|
|
7 => 0,
|
|
],
|
|
[
|
|
0 => 0,
|
|
1 => 0,
|
|
2 => 0,
|
|
3 => 0,
|
|
4 => 1,
|
|
5 => 0,
|
|
6 => 1,
|
|
7 => 1,
|
|
],
|
|
];
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer(), $stopWords);
|
|
|
|
$vectorizer->fit($samples);
|
|
$this->assertSame($vocabulary, $vectorizer->getVocabulary());
|
|
|
|
$vectorizer->transform($samples);
|
|
$this->assertSame($tokensCounts, $samples);
|
|
}
|
|
}
|