mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-25 06:17:34 +00:00
207 lines
6.2 KiB
PHP
207 lines
6.2 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Metric;
|
|
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\Metric\ClassificationReport;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class ClassificationReportTest extends TestCase
|
|
{
|
|
public function testClassificationReportGenerateWithStringLabels(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
'cat' => 0.5,
|
|
'ant' => 0.0,
|
|
'bird' => 1.0,
|
|
];
|
|
$recall = [
|
|
'cat' => 1.0,
|
|
'ant' => 0.0,
|
|
'bird' => 0.67,
|
|
];
|
|
$f1score = [
|
|
'cat' => 0.67,
|
|
'ant' => 0.0,
|
|
'bird' => 0.80,
|
|
];
|
|
$support = [
|
|
'cat' => 1,
|
|
'ant' => 1,
|
|
'bird' => 3,
|
|
];
|
|
|
|
// ClassificationReport uses macro-averaging as default
|
|
$average = [
|
|
'precision' => 0.5, // (1/2 + 0 + 1) / 3 = 1/2
|
|
'recall' => 0.56, // (1 + 0 + 2/3) / 3 = 5/9
|
|
'f1score' => 0.49, // (2/3 + 0 + 4/5) / 3 = 22/45
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportGenerateWithNumericLabels(): void
|
|
{
|
|
$labels = [0, 1, 2, 2, 2];
|
|
$predicted = [0, 0, 2, 2, 1];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
0 => 0.5,
|
|
1 => 0.0,
|
|
2 => 1.0,
|
|
];
|
|
$recall = [
|
|
0 => 1.0,
|
|
1 => 0.0,
|
|
2 => 0.67,
|
|
];
|
|
$f1score = [
|
|
0 => 0.67,
|
|
1 => 0.0,
|
|
2 => 0.80,
|
|
];
|
|
$support = [
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 3,
|
|
];
|
|
$average = [
|
|
'precision' => 0.5,
|
|
'recall' => 0.56,
|
|
'f1score' => 0.49,
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportAverageOutOfRange(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$report = new ClassificationReport($labels, $predicted, 0);
|
|
}
|
|
|
|
public function testClassificationReportMicroAverage(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted, ClassificationReport::MICRO_AVERAGE);
|
|
|
|
$average = [
|
|
'precision' => 0.6, // TP / (TP + FP) = (1 + 0 + 2) / (2 + 1 + 2) = 3/5
|
|
'recall' => 0.6, // TP / (TP + FN) = (1 + 0 + 2) / (1 + 1 + 3) = 3/5
|
|
'f1score' => 0.6, // Harmonic mean of precision and recall
|
|
];
|
|
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportMacroAverage(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted, ClassificationReport::MACRO_AVERAGE);
|
|
|
|
$average = [
|
|
'precision' => 0.5, // (1/2 + 0 + 1) / 3 = 1/2
|
|
'recall' => 0.56, // (1 + 0 + 2/3) / 3 = 5/9
|
|
'f1score' => 0.49, // (2/3 + 0 + 4/5) / 3 = 22/45
|
|
];
|
|
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportWeightedAverage(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted, ClassificationReport::WEIGHTED_AVERAGE);
|
|
|
|
$average = [
|
|
'precision' => 0.7, // (1/2 * 1 + 0 * 1 + 1 * 3) / 5 = 7/10
|
|
'recall' => 0.6, // (1 * 1 + 0 * 1 + 2/3 * 3) / 5 = 3/5
|
|
'f1score' => 0.61, // (2/3 * 1 + 0 * 1 + 4/5 * 3) / 5 = 46/75
|
|
];
|
|
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalsePositiveSumEqualsZero(): void
|
|
{
|
|
$labels = [1, 2];
|
|
$predicted = [2, 2];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 0.5,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalseNegativeSumEqualsZero(): void
|
|
{
|
|
$labels = [2, 2, 1];
|
|
$predicted = [2, 2, 3];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 1,
|
|
3 => 0,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDividedByZeroWhenPredictedLabelsAllNotMatch(): void
|
|
{
|
|
$labels = [1, 2, 3, 4, 5];
|
|
$predicted = [2, 3, 4, 5, 6];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
'precision' => 0,
|
|
'recall' => 0,
|
|
'f1score' => 0,
|
|
], $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDividedByZeroWhenLabelsAreEmpty(): void
|
|
{
|
|
$labels = [];
|
|
$predicted = [];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
'precision' => 0,
|
|
'recall' => 0,
|
|
'f1score' => 0,
|
|
], $report->getAverage(), '', 0.01);
|
|
}
|
|
}
|