mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-24 23:58:24 +00:00
106 lines
3.0 KiB
PHP
106 lines
3.0 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests;
|
|
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\FeatureUnion;
|
|
use Phpml\Pipeline;
|
|
use Phpml\Preprocessing\ColumnFilter;
|
|
use Phpml\Preprocessing\Imputer;
|
|
use Phpml\Preprocessing\Imputer\Strategy\MeanStrategy;
|
|
use Phpml\Preprocessing\LabelEncoder;
|
|
use Phpml\Preprocessing\LambdaTransformer;
|
|
use Phpml\Preprocessing\NumberConverter;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
final class FeatureUnionTest extends TestCase
|
|
{
|
|
public function testFitAndTransform(): void
|
|
{
|
|
$columns = ['age', 'income', 'sex'];
|
|
$samples = [
|
|
['23', '100000', 'male'],
|
|
['23', '200000', 'female'],
|
|
['43', '150000', 'female'],
|
|
['33', 'n/a', 'male'],
|
|
];
|
|
$targets = ['1', '2', '1', '3'];
|
|
|
|
$union = new FeatureUnion([
|
|
new Pipeline([
|
|
new ColumnFilter($columns, ['sex']),
|
|
new LambdaTransformer(function (array $sample) {
|
|
return $sample[0];
|
|
}),
|
|
new LabelEncoder(),
|
|
]),
|
|
new Pipeline([
|
|
new ColumnFilter($columns, ['age', 'income']),
|
|
new NumberConverter(true),
|
|
new Imputer(null, new MeanStrategy(), Imputer::AXIS_COLUMN),
|
|
]),
|
|
]);
|
|
|
|
$union->fitAndTransform($samples, $targets);
|
|
|
|
self::assertEquals([
|
|
[0, 23.0, 100000.0],
|
|
[1, 23.0, 200000.0],
|
|
[1, 43.0, 150000.0],
|
|
[0, 33.0, 150000.0],
|
|
], $samples);
|
|
self::assertEquals([1, 2, 1, 3], $targets);
|
|
}
|
|
|
|
public function testFitAndTransformSeparate(): void
|
|
{
|
|
$columns = ['age', 'income', 'sex'];
|
|
$trainSamples = [
|
|
['23', '100000', 'male'],
|
|
['23', '200000', 'female'],
|
|
['43', '150000', 'female'],
|
|
['33', 'n/a', 'male'],
|
|
];
|
|
$testSamples = [
|
|
['43', '500000', 'female'],
|
|
['13', 'n/a', 'male'],
|
|
['53', 'n/a', 'male'],
|
|
['43', 'n/a', 'female'],
|
|
];
|
|
|
|
$union = new FeatureUnion([
|
|
new Pipeline([
|
|
new ColumnFilter($columns, ['sex']),
|
|
new LambdaTransformer(function (array $sample) {
|
|
return $sample[0];
|
|
}),
|
|
new LabelEncoder(),
|
|
]),
|
|
new Pipeline([
|
|
new ColumnFilter($columns, ['age', 'income']),
|
|
new NumberConverter(),
|
|
new Imputer(null, new MeanStrategy(), Imputer::AXIS_COLUMN),
|
|
]),
|
|
]);
|
|
|
|
$union->fit($trainSamples);
|
|
$union->transform($testSamples);
|
|
|
|
self::assertEquals([
|
|
[1, 43.0, 500000.0],
|
|
[0, 13.0, 150000.0],
|
|
[0, 53.0, 150000.0],
|
|
[1, 43.0, 150000.0],
|
|
], $testSamples);
|
|
}
|
|
|
|
public function testNotAllowForEmptyPipelines(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
|
|
new FeatureUnion([]);
|
|
}
|
|
}
|