mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-29 16:24:05 +00:00
e83f7b95d5
- Backpropagation using the neuron activation functions derivative - instead of hardcoded sigmoid derivative - Added missing activation functions derivatives - Sigmoid forced for the output layer - Updated ThresholdedReLU default threshold to 0 (acts as a ReLU) - Unit tests for derivatives - Unit tests for classifiers using different activation functions - Added missing docs
56 lines
1.3 KiB
PHP
56 lines
1.3 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
|
|
|
|
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class PReLUTest extends TestCase
|
|
{
|
|
/**
|
|
* @dataProvider preluProvider
|
|
*/
|
|
public function testPReLUActivationFunction($beta, $expected, $value): void
|
|
{
|
|
$prelu = new PReLU($beta);
|
|
|
|
$this->assertEquals($expected, $prelu->compute($value), '', 0.001);
|
|
}
|
|
|
|
public function preluProvider(): array
|
|
{
|
|
return [
|
|
[0.01, 0.367, 0.367],
|
|
[0.0, 1, 1],
|
|
[0.3, -0.3, -1],
|
|
[0.9, 3, 3],
|
|
[0.02, -0.06, -3],
|
|
];
|
|
}
|
|
|
|
/**
|
|
* @dataProvider preluDerivativeProvider
|
|
*/
|
|
public function testPReLUDerivative($beta, $expected, $value): void
|
|
{
|
|
$prelu = new PReLU($beta);
|
|
$activatedValue = $prelu->compute($value);
|
|
$this->assertEquals($expected, $prelu->differentiate($value, $activatedValue));
|
|
}
|
|
|
|
public function preluDerivativeProvider(): array
|
|
{
|
|
return [
|
|
[0.5, 0.5, -3],
|
|
[0.5, 1, 0],
|
|
[0.5, 1, 1],
|
|
[0.01, 1, 1],
|
|
[1, 1, 1],
|
|
[0.3, 1, 0.1],
|
|
[0.1, 0.1, -0.1],
|
|
];
|
|
}
|
|
}
|