php-ml/tests/Phpml/Metric/AccuracyTest.php
Tomáš Votruba 946fbbc521 Tests: use PHPUnit (6.4) exception methods (#165)
* tests: update to PHPUnit 6.0 with rector

* [cs] clean empty docs

* composer: bump to PHPUnit 6.4

* tests: use class references over strings

* cleanup
2017-11-28 08:00:13 +01:00

57 lines
1.6 KiB
PHP

<?php
declare(strict_types=1);
namespace tests\Phpml\Metric;
use Phpml\Classification\SVC;
use Phpml\CrossValidation\RandomSplit;
use Phpml\Dataset\Demo\IrisDataset;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Metric\Accuracy;
use Phpml\SupportVectorMachine\Kernel;
use PHPUnit\Framework\TestCase;
class AccuracyTest extends TestCase
{
public function testThrowExceptionOnInvalidArguments(): void
{
$this->expectException(InvalidArgumentException::class);
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'a'];
Accuracy::score($actualLabels, $predictedLabels);
}
public function testCalculateNormalizedScore(): void
{
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'a', 'b', 'b'];
$this->assertEquals(0.5, Accuracy::score($actualLabels, $predictedLabels));
}
public function testCalculateNotNormalizedScore(): void
{
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'b', 'b', 'b'];
$this->assertEquals(3, Accuracy::score($actualLabels, $predictedLabels, false));
}
public function testAccuracyOnDemoDataset(): void
{
$dataset = new RandomSplit(new IrisDataset(), 0.5, 123);
$classifier = new SVC(Kernel::RBF);
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
$predicted = $classifier->predict($dataset->getTestSamples());
$accuracy = Accuracy::score($dataset->getTestLabels(), $predicted);
$expected = PHP_VERSION_ID >= 70100 ? 1 : 0.959;
$this->assertEquals($expected, $accuracy, '', 0.01);
}
}