mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 16:15:50 +00:00
726cf4cddf
* travis: move coveralls here, decouple from package * composer: use PSR4 * phpunit: simpler config * travis: add ecs run * composer: add ecs dev * use standard vendor/bin directory for dependency bins, confuses with local bins and require gitignore handling * ecs: add PSR2 * [cs] PSR2 spacing fixes * [cs] PSR2 class name fix * [cs] PHP7 fixes - return semicolon spaces, old rand functions, typehints * [cs] fix less strict typehints * fix typehints to make tests pass * ecs: ignore typehint-less elements * [cs] standardize arrays * [cs] standardize docblock, remove unused comments * [cs] use self where possible * [cs] sort class elements, from public to private * [cs] do not use yoda (found less yoda-cases, than non-yoda) * space * [cs] do not assign in condition * [cs] use namespace imports if possible * [cs] use ::class over strings * [cs] fix defaults for arrays properties, properties and constants single spacing * cleanup ecs comments * [cs] use item per line in multi-items array * missing line * misc * rebase
133 lines
3.5 KiB
PHP
133 lines
3.5 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace tests\Phpml\Metric;
|
|
|
|
use Phpml\Metric\ClassificationReport;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class ClassificationReportTest extends TestCase
|
|
{
|
|
public function testClassificationReportGenerateWithStringLabels(): void
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
'cat' => 0.5,
|
|
'ant' => 0.0,
|
|
'bird' => 1.0,
|
|
];
|
|
$recall = [
|
|
'cat' => 1.0,
|
|
'ant' => 0.0,
|
|
'bird' => 0.67,
|
|
];
|
|
$f1score = [
|
|
'cat' => 0.67,
|
|
'ant' => 0.0,
|
|
'bird' => 0.80,
|
|
];
|
|
$support = [
|
|
'cat' => 1,
|
|
'ant' => 1,
|
|
'bird' => 3,
|
|
];
|
|
$average = [
|
|
'precision' => 0.75,
|
|
'recall' => 0.83,
|
|
'f1score' => 0.73,
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportGenerateWithNumericLabels(): void
|
|
{
|
|
$labels = [0, 1, 2, 2, 2];
|
|
$predicted = [0, 0, 2, 2, 1];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [
|
|
0 => 0.5,
|
|
1 => 0.0,
|
|
2 => 1.0,
|
|
];
|
|
$recall = [
|
|
0 => 1.0,
|
|
1 => 0.0,
|
|
2 => 0.67,
|
|
];
|
|
$f1score = [
|
|
0 => 0.67,
|
|
1 => 0.0,
|
|
2 => 0.80,
|
|
];
|
|
$support = [
|
|
0 => 1,
|
|
1 => 1,
|
|
2 => 3,
|
|
];
|
|
$average = [
|
|
'precision' => 0.75,
|
|
'recall' => 0.83,
|
|
'f1score' => 0.73,
|
|
];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalsePositiveSumEqualsZero(): void
|
|
{
|
|
$labels = [1, 2];
|
|
$predicted = [2, 2];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 0.5,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalseNegativeSumEqualsZero(): void
|
|
{
|
|
$labels = [2, 2, 1];
|
|
$predicted = [2, 2, 3];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
1 => 0.0,
|
|
2 => 1,
|
|
3 => 0,
|
|
], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDividedByZeroWhenPredictedLabelsAllNotMatch(): void
|
|
{
|
|
$labels = [1, 2, 3, 4, 5];
|
|
$predicted = [2, 3, 4, 5, 6];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
'precision' => 0,
|
|
'recall' => 0,
|
|
'f1score' => 0,
|
|
], $report->getAverage(), '', 0.01);
|
|
}
|
|
}
|