mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-16 10:15:13 +00:00
84 lines
3.0 KiB
PHP
84 lines
3.0 KiB
PHP
<?php
|
|
|
|
declare (strict_types = 1);
|
|
|
|
namespace tests\Classifier;
|
|
|
|
use Phpml\Classifier\KNearestNeighbors;
|
|
use Phpml\CrossValidation\RandomSplit;
|
|
use Phpml\Dataset\Demo\Glass;
|
|
use Phpml\Dataset\Demo\Iris;
|
|
use Phpml\Dataset\Demo\Wine;
|
|
use Phpml\Metric\Accuracy;
|
|
|
|
class KNearestNeighborsTest extends \PHPUnit_Framework_TestCase
|
|
{
|
|
public function testPredictSingleSampleWithDefaultK()
|
|
{
|
|
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$classifier = new KNearestNeighbors();
|
|
$classifier->train($samples, $labels);
|
|
|
|
$this->assertEquals('b', $classifier->predict([3, 2]));
|
|
$this->assertEquals('b', $classifier->predict([5, 1]));
|
|
$this->assertEquals('b', $classifier->predict([4, 3]));
|
|
$this->assertEquals('b', $classifier->predict([4, -5]));
|
|
|
|
$this->assertEquals('a', $classifier->predict([2, 3]));
|
|
$this->assertEquals('a', $classifier->predict([1, 2]));
|
|
$this->assertEquals('a', $classifier->predict([1, 5]));
|
|
$this->assertEquals('a', $classifier->predict([3, 10]));
|
|
}
|
|
|
|
public function testPredictArrayOfSamples()
|
|
{
|
|
$trainSamples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
|
$trainLabels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
|
|
|
$testSamples = [[3, 2], [5, 1], [4, 3], [4, -5], [2, 3], [1, 2], [1, 5], [3, 10]];
|
|
$testLabels = ['b', 'b', 'b', 'b', 'a', 'a', 'a', 'a'];
|
|
|
|
$classifier = new KNearestNeighbors();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$this->assertEquals($testLabels, $predicted);
|
|
}
|
|
|
|
public function testAccuracyOnIrisDataset()
|
|
{
|
|
$dataset = new RandomSplit(new Iris(), $testSize = 0.5, $seed = 123);
|
|
$classifier = new KNearestNeighbors($k = 4);
|
|
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
|
|
$predicted = $classifier->predict($dataset->getTestSamples());
|
|
$score = Accuracy::score($dataset->getTestLabels(), $predicted);
|
|
|
|
$this->assertEquals(0.96, $score);
|
|
}
|
|
|
|
public function testAccuracyOnWineDataset()
|
|
{
|
|
$dataset = new RandomSplit(new Wine(), $testSize = 0.3, $seed = 321);
|
|
$classifier = new KNearestNeighbors(1);
|
|
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
|
|
$predicted = $classifier->predict($dataset->getTestSamples());
|
|
$score = Accuracy::score($dataset->getTestLabels(), $predicted);
|
|
|
|
$this->assertEquals(0.85185185185185186, $score);
|
|
}
|
|
|
|
public function testAccuracyOnGlassDataset()
|
|
{
|
|
$dataset = new RandomSplit(new Glass(), $testSize = 0.3, $seed = 456);
|
|
$classifier = new KNearestNeighbors(7);
|
|
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
|
|
$predicted = $classifier->predict($dataset->getTestSamples());
|
|
$score = Accuracy::score($dataset->getTestLabels(), $predicted);
|
|
|
|
$this->assertEquals(0.69230769230769229, $score);
|
|
}
|
|
|
|
}
|