php-ml/tests/Phpml/NeuralNetwork/Network/MultilayerPerceptronTest.php
2017-02-03 12:58:25 +01:00

75 lines
2.0 KiB
PHP

<?php
declare(strict_types=1);
namespace tests\Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Node\Neuron;
use PHPUnit\Framework\TestCase;
class MultilayerPerceptronTest extends TestCase
{
public function testMultilayerPerceptronLayersInitialization()
{
$mlp = new MultilayerPerceptron([2, 2, 1]);
$this->assertCount(3, $mlp->getLayers());
$layers = $mlp->getLayers();
// input layer
$this->assertCount(3, $layers[0]->getNodes());
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
// hidden layer
$this->assertCount(3, $layers[1]->getNodes());
$this->assertNotContainsOnly(Neuron::class, $layers[0]->getNodes());
// output layer
$this->assertCount(1, $layers[2]->getNodes());
$this->assertContainsOnly(Neuron::class, $layers[2]->getNodes());
}
public function testSynapsesGeneration()
{
$mlp = new MultilayerPerceptron([2, 2, 1]);
$layers = $mlp->getLayers();
foreach ($layers[1]->getNodes() as $node) {
if ($node instanceof Neuron) {
$synapses = $node->getSynapses();
$this->assertCount(3, $synapses);
$synapsesNodes = $this->getSynapsesNodes($synapses);
foreach ($layers[0]->getNodes() as $prevNode) {
$this->assertContains($prevNode, $synapsesNodes);
}
}
}
}
/**
* @param array $synapses
*
* @return array
*/
private function getSynapsesNodes(array $synapses): array
{
$nodes = [];
foreach ($synapses as $synapse) {
$nodes[] = $synapse->getNode();
}
return $nodes;
}
/**
* @expectedException \Phpml\Exception\InvalidArgumentException
*/
public function testThrowExceptionOnInvalidLayersNumber()
{
new MultilayerPerceptron([2]);
}
}