mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-28 15:56:36 +00:00
d30c212f3b
* Check if feature exist when predict target in NaiveBayes * Fix typo
145 lines
5.0 KiB
PHP
145 lines
5.0 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Classification;
|
|
|
|
use Phpml\Classification\NaiveBayes;
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\ModelManager;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class NaiveBayesTest extends TestCase
|
|
{
|
|
public function testPredictSingleSample(): void
|
|
{
|
|
$samples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$labels = ['a', 'b', 'c'];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($samples, $labels);
|
|
|
|
self::assertEquals('a', $classifier->predict([3, 1, 1]));
|
|
self::assertEquals('b', $classifier->predict([1, 4, 1]));
|
|
self::assertEquals('c', $classifier->predict([1, 1, 6]));
|
|
}
|
|
|
|
public function testPredictArrayOfSamples(): void
|
|
{
|
|
$trainSamples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$trainLabels = ['a', 'b', 'c'];
|
|
|
|
$testSamples = [[3, 1, 1], [5, 1, 1], [4, 3, 8], [1, 1, 2], [2, 3, 2], [1, 2, 1], [9, 5, 1], [3, 1, 2]];
|
|
$testLabels = ['a', 'a', 'c', 'c', 'b', 'b', 'a', 'a'];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
self::assertEquals($testLabels, $predicted);
|
|
|
|
// Feed an extra set of training data.
|
|
$samples = [[1, 1, 6]];
|
|
$labels = ['d'];
|
|
$classifier->train($samples, $labels);
|
|
|
|
$testSamples = [[1, 1, 6], [5, 1, 1]];
|
|
$testLabels = ['d', 'a'];
|
|
self::assertEquals($testLabels, $classifier->predict($testSamples));
|
|
}
|
|
|
|
public function testSaveAndRestore(): void
|
|
{
|
|
$trainSamples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$trainLabels = ['a', 'b', 'c'];
|
|
|
|
$testSamples = [[3, 1, 1], [5, 1, 1], [4, 3, 8]];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'naive-bayes-test-'.random_int(100, 999).'-'.uniqid('', false);
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
|
|
public function testPredictSimpleNumericLabels(): void
|
|
{
|
|
$samples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$labels = ['1996', '1997', '1998'];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($samples, $labels);
|
|
|
|
self::assertEquals('1996', $classifier->predict([3, 1, 1]));
|
|
self::assertEquals('1997', $classifier->predict([1, 4, 1]));
|
|
self::assertEquals('1998', $classifier->predict([1, 1, 6]));
|
|
}
|
|
|
|
public function testPredictArrayOfSamplesNumericalLabels(): void
|
|
{
|
|
$trainSamples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$trainLabels = ['1996', '1997', '1998'];
|
|
|
|
$testSamples = [[3, 1, 1], [5, 1, 1], [4, 3, 8], [1, 1, 2], [2, 3, 2], [1, 2, 1], [9, 5, 1], [3, 1, 2]];
|
|
$testLabels = ['1996', '1996', '1998', '1998', '1997', '1997', '1996', '1996'];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
self::assertEquals($testLabels, $predicted);
|
|
|
|
// Feed an extra set of training data.
|
|
$samples = [[1, 1, 6]];
|
|
$labels = ['1999'];
|
|
$classifier->train($samples, $labels);
|
|
|
|
$testSamples = [[1, 1, 6], [5, 1, 1]];
|
|
$testLabels = ['1999', '1996'];
|
|
self::assertEquals($testLabels, $classifier->predict($testSamples));
|
|
}
|
|
|
|
public function testSaveAndRestoreNumericLabels(): void
|
|
{
|
|
$trainSamples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$trainLabels = ['1996', '1997', '1998'];
|
|
|
|
$testSamples = [[3, 1, 1], [5, 1, 1], [4, 3, 8]];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
$filename = 'naive-bayes-test-'.random_int(100, 999).'-'.uniqid('', false);
|
|
$filepath = (string) tempnam(sys_get_temp_dir(), $filename);
|
|
$modelManager = new ModelManager();
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
self::assertEquals($classifier, $restoredClassifier);
|
|
self::assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
}
|
|
|
|
public function testInconsistentFeaturesInSamples(): void
|
|
{
|
|
$trainSamples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
|
|
$trainLabels = ['1996', '1997', '1998'];
|
|
|
|
$testSamples = [[3, 1, 1], [5, 1], [4, 3, 8]];
|
|
|
|
$classifier = new NaiveBayes();
|
|
$classifier->train($trainSamples, $trainLabels);
|
|
|
|
$this->expectException(InvalidArgumentException::class);
|
|
|
|
$classifier->predict($testSamples);
|
|
}
|
|
}
|